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EXECUTIVE SUMMARY

J.L. Volakis, L.C. Kempel, R.J. Siiva, H. Wang and A. Woo

Project Goal
The goal of this project was to develop analysis codes for computing

the scattering and radiation of antennas on cylindrically and doubly

conformal platforms. Available techniques and codes can only treat

antennas on planar surfaces whereas in most cases (missile and

aircraft platforms), the printed antennas are situated in cylindrical of

doubly curved surfaces. Modern vehicle platforms are also composite

and/or coated with dielectric materials and this presents an

additional challege in the analysis.

Progress Summary

Because of our previous experience in finite element and boundary

integral methods, a hybrid finite element-boundary integral(FE-BI)

method was employed for the analysis of patch antennas on planar

and cylindrical platforms. The main challenge in this implementation

was the efficient evaluation of the cylinder's Green's function in a

form useful for the FE-BI method. After 4 months of preparatory

work, both the FE-BI formulation and the Green's function evaluation

were completed and programmed in a rather general purpose

computer code. This is the first code of its kind for the analysis of

antennas on cylindrical platforms and because of its future utility,
several user-oriented features were included with it. The code is

referred to as FEMA-CYL (Finite Element Method for Antennas on

.C,,.,vJ.inders) and has already been delivered to NASA and Navy users

along with a test case and users manual. To validate the code,

measurements were performed by J. Silva at the Naval Weapons

Center, China Lake and these overlaid the calculations.

Over the last few months of the project period, we concentrated on

the extension of the FEMA-CYL code to antennas on coated and

possibly doubly conformal platforms. Such a requirement precludes

use of the boundary integral method for terminating the mesh

because integral equations are inefficient for modeling doubly

conformal surfaces. Consequently, we examined a class of new

absorbing boundary conditions(ABCs) for terminating the finite

element mesh. These ABCs proved quite accurate for antenna



applications and their performance and capability is described in the
first section of this final report. Also, an earlier report describes a
comparison of the computational advantages associated with ABC and
boundary mesh terminations(see U-M Radiation Laboratory report
031173-1-T). The implementation of the finite element-ABC
formulation resulted in the code FEMA-CYLA and we are currently
preparing a users manual for this code. Note that this code is capable
of analyzing antennas embedded in coated platforms and results are
included at least for one of those situations. In addtion, we began the
development of a finite element formulation for modeling non-
rectangular printed antennas on doubly conformal platforms. This
formulation employs prismatic elements which are most suitable for
coupling with triangular surface meshes in generating the volume
mesh. For typical patch antennas we anticipate that the mesh
generation will be done without a need to use a external meshing
facilities.

A total of three reports and 4 journal papers were published as a
result of this consortium agreement:

REPORTS
"A comparative study of an ABC and an artificial absorber for
truncating fintie element meshes" Univ. of Michigan Radiation
Laboratory Technical Report 031173-1-T

This report compares three different techniques for
terminating the finite element mesh in modeling conformal
patch antennas and slot arrays. 15pp.

"Radiation and scattering from cylindrically conformal printed
antennas" Univ. of Michigan Radiation Laboratory Technical Report
031173-2-T, 166pp.

This is an extensive report desribing the theory and
capabilities of the FEMA-CYL code. Many results for scattering
and radiation by cylindrically conformal antennas are included
along with mesurements.

"Radiation and scattering from antennas in coated conformal
platforms" Univ. of Michigan Radiation Laboratory Technical Report
031173-3-T (this report)
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This is the final report and contains several sections which

highlight the research activity over the length of the

project/consortium agreement. The report contains the

following sections:

1. FE-ABC formulation for patch antennas on a coated circular

cylinder--describes the formulation of the FEMA-CYLA code.

2. Radiation by cavity-backed antennas on a circular cylinder--

describes the performance of the FEMA-CYL code for antenna

radiation analysis and includes the measured results collected

by J. Silva at the Naval Weapons Center, China Lake, CA. This

section has been submitted as a paper to IEE Proceedings-Pt. H

The paper is co-authored with J.Silva

3. Scattering by cavity-backed antennas on a circular cylinder-

-describes the performance of the FEMA-CYL code for

computing antenna scattering. This section is a reprint of the

journal paper which appeared in IEEE Trans. Antennas &

Propagat., Vol. 42, Sept. 1994, pp. 1268-1279.

4. A Hybrid finite element-boundary integral method for the

analysis of cavity-backed antennas of arbitrary shape--

describes the basics of the finite element-boundary integral

formulation for modeling conformal antennas. This section is a

reprint of the journal paper which appeared in IEEE Trans.

Antennas & Propagat. Vol. 42, Sept. 1994, pp. 1233-1242. It is

co-authored with A. Woo (NASA-Ames) and H. Wang(Naval

Weapons Center)

Journal Papers

J. Gong, J.L. Volakis, A.C. Woo and H.T.G. Wang, "A hybrid finite

element method for the analysis of cavity-backed antennas of

arbitrary shape," IEEE Trans Antennas Propagat., vol. 42, Sept.

1994, pp. 1233-1242.

L.C. Kempel and J. L. Volakis, "Scattering by cavity-backed

antennas on a circular cylinder," IEEE Trans. Antennas &

Propagat., Vol. 42, Sept. 1994, pp. 1268-1279.



L.C. Kempel, J.L., Volakis and J. Silva, "Radiation by cavity-
backed antennas on a circular cylinder," submitted for
publication lEE Proceedings, Pt. H.

T. Ozdemir and J.L. Volakis, "A comparative study of an ABC

and an artificial absorber for truncating finite element meshes,"

Radio Science, to appear in 1995
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FE-ABC FORMULATION FOR PATCH ANTENNAS ON A CIRCULAR

CYLINDER

Leo C. Kempel and John L. Volakis

The University of Michigan

Radiation Laboratory

1301 Beal Ave.

Ann Arbor, MI 48109-2122

Abstract

The finite element-boundary integral (FE-BI) method has been shown to

accurately model the scattering and radiation of cavity-backed patch anten-

nas. Unfortunately, extension of this rigorous technique to coated or doubly

curved platforms is cumbersome and inefficient. An alternative approximate

approach is to employ an absorbing boundary condition for terminating the

finite element mesh thus avoiding use of a Green's function. In this report,

a FE-ABC method is used to calculate the radar cross section (RCS) and

radiation pattern of a cavity-backed patch antenna which is recessed within

a metallic surface. It is shown that this approach is accurate for RCS and

antenna pattern calculations with an ABC surface displaced as little as 0.3,_

from the cavity aperture. These patch antennas may have a dielectric overlay

which may also be modelled with this technique.

1 Introduction

Recently, a Finite Element-Boundary Integral (FF_,-BI) formulation was pro-

posed by the authors [1] for modeling the scattering and radiation of cavity-

backed patch antennas recessed in a cylindrical platform. The use of the

boundary integral for terminating the FE mesh renders the FE-BI method

numerically exact but leads to a partially full and partially sparse matrix. To

obtain a fully sparse system, we must use approximate local boundary con-

ditions for terminating the FE mesh and this is usually done by employing

absorbing boundary conditions (ABCs).

In this report, a new conformal ABC recently introduced by Chatterjee

and \'olaki_ [2] will bc used for scattering and radiation l)a,',I:_tc'r (:alcu-

lations in connection with cavity-backed antenna elements on a cylindrical
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platform. This second order conformal ABC allows the closure surface to

be brought quite close to the cavity aperture. As a result, the required de-

grees of freedom are significantly less than the number typically used with

traditional spherical surface/boundary condition such as the one proposed

by Peterson [3] or the one introduced by Webb and Kanellopoulos [4]. The

accuracy of this FE-ABC method will be established along with guidelines

for the distance between the structure and the ABC boundary. In addition,

this new FE-ABC approach will be used to compute the radiation pattern

and input impedance of conformal patch antennas with a dielectric overlay.

2 Formulation

Consider the computational domain shown in Figure 1. There are two volume

..................... .._ Sabc

o ° ° Patches Region I - .

Composite skin _l .''_: ........ "1" t -. / Composite skin..f. _... :-....
\ _ .,_: . •. •. • g_o_e ................. ":.,.. _ ]

Figure 1: Typical coated cavity-backed patch antenna with ABC mesh ter-
mination.

regions: an exterior region, V t, which includes any radome overlay and an

interior region, V u. Both regions may be inhomogeneous and are separated

by the aperture surface, S _p, and the surface metallization surface, S 'm both

of which lie on the surface of the metallic cylinder (p = a). Thus, the

exterior region is defined by p > a while the interior region has p < a.

The computational domain is bounded by the union of the metallic surface,

S' ..... = _"_ -t- _'_" where _'_ is the metallic walls of the cavity and tim

ABC surface, S _sc.



as

Within the computational volume, the total electric fields may be written

where /_cui (r-')

likewise written

= EU(r-') F• VII (1)

= /_i(r-') + /_T(r-') as before. The total magnetic fields are

#(_ = fi'(_ + fi_'(_ e• v'
= HII(r-") r' • V II (2)

where/_'(r--') = #i(r-') +/_'(_. The boundary conditions are readily written

in terms of the electric and magnetic fields. Within the cavity, the tangential

electric field vanishes on the metallic walls

7"1 X #ll(r-") = 0 _ • ,,.,qcm (3)

while on the aperture, the total tangential fields are continuous

×#'(_ = a x #'(_ e• s°'
×/7'(_ = _ × _0"(_ - a x #_'(_ e• s°" (4)

On metallic surfaces, all tangential electric fields vanish, i.e.

× #_'(_ = a x #_(e = a × #'(_ = o F• s"_ (5)

while fi x/_l(v-') also vanishes over the aperture

×#_'(_ = o e • s °, (6)

since it contains both the incident and reflected fields. Thus, the only non-

zero electric fields on the surface of the metallic cylinder correspond to the

unknown fields within each region which are continuous across the surface

aperture as implied by (4).

The FE equations may be developed by considering the inhomogeneous

vector wave cquatiun. Ez.ploying the method of weighted residuals and
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Green's first vector identity, the weakform of the vector waveequation

f V' x .E(p,¢,z). V x 14:i(p,¢,Z)pdpdCdz; ¢,z)

-k;° Iv, er(p, ¢, z ) E(p, ¢, z ) " I47i(p, ¢, z )p dp dC dz

-jkoZoJs fi(p,¢,z)xH(p,¢,z).l_i(p,¢,z)dS= fi,,, (7)
|

where fi(p, ¢, z) indicates the outward pointing normal of the element surface

associated with the ith unknown, Si is the surface area of that element, and

/_(p, ¢, z) is the total magnetic field. It can be shown that the surface integral

of (7) vanishes for all elements which do not border the cavity aperture.

Furthermore, their non-zero contribution is limited to the portion of their

surface which coincides with the aperture. The interior source functional,

f_,,t, is once again given by

j,{ }f.i,_, = _ V x [#,(p,¢,z) j +jk°Z°fi(p'¢'z) • lYdi(p,¢,z)pdpd¢48 )

where/_ri and jl are impressed currents within the cavity.

A domain decomposition is accomplished by substituting the total field

relationships (1) and (2) into (7) and after some manipulation we get the

FE-ABC equation

- koe, E • ff"i dV +
I Ij r

la,, _"

(9)

where 5'__ denot_es int, egraLion of the aperture associated with the Zth un-

known, S[e is associated with integration over the bounding surface of any

$



dielectric elementsin the exterior region, #ri is the relative permeability of
the elements interior to S[ d whereas #re is the permeability exterior to that
surface.

This set of FF_:ABC equations may be written as a linear system of equa-
tions

{E_,_, } = {f,,,,} (10)

where the FE matrix [A{]__ll] may be written as a sum of the FE matrix

used in the FE-BI formulation [1] and a second term attributed to the ABC
surface

[.A{I__U] = [,A] 4- [.A _u] (11)

The new FE-ABC equation (9) is comparable to (7) except that the lat-

ter utilizes a total field formulation throughout the computational domain.

However, previously we utilized an integral expression for the total magnetic

field across the aperture which resulted in the FE-BI equation used in [1].

Such an integral expression provides an exact relationship between the total

tangential electric and magnetic fields over the aperture surface which also

formed the computational domain boundary. Alternatively, we may employ

an approximate relationship between these two fields with the goal of re-

taining the sparsity of the resulting linear system. Additionally, as shown in

(9), this FE-ABC formulation may be used for coated as well as uncoated

geometries. In the next section, we will develop an approximate relationship
suitable for mesh closure.

3 Conformal ABCs

Traditional three-dimensional vector ABCs [3, 4] require a spherical outer

boundary which results in an excessive number of unknowns. New conformal

ABCs have recently been proposed by Chatterjee and Volakis [2] which have

an outer boundary that follows the contour of the enclosed geometry resulting

in a minimal number of unknowns. In this section, the specific expressions

required by this new ABC for a cylindrical-rectangular box boundary will be

derived. A definition of ABC order will be given and subsequc',Kl 3 the first

and second-order ABC expressions will be presented.
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For the purposesof discussion,we define a secondary field as the field
which is a consequenceof equivalentcurrentsthat aresupportedby somepri-
mary sourcewhich iseither externalor internal to the computational domain.
Thus for scattering problems,the scatteredfield is the secondaryfield while
the incident and reflectedfields areconsideredprimary fields. Likewise,for a
radiation problem,the radiated field is the secondaryfield whereasthe source
field due to an impressedcurrent is the primary field. In (9), we recognize
that an ABC must supply a relationship betweenthe tangential components
of magnetic and electric secondary fields on the absorbing boundary, S _bc.

The secondary field may be expressed as a Wilcox expansion

"' - (12)
S (n, tl,t2) 4rv_ lira ,t2)

p=O uP

where u = _, Ri = pi + n and p; is a principal radius of curvature.

In this form, the curvature of the non-spherical wavefront is explicitly used.

The point of observation is given in Dupin coordinates as

x = nh+_.o(tl,t2) (13)

where h is the unit normal and _,o(tl, t2) denotes the surface of the reference

phase front and therefore, tl and t2 denote tangential coordinates on that sur-

face. Absorbing boundary conditions annihilate outward propagating waves

up to a certain order. A zeroth-order (P = 0) ABC represents the usual

Sommerfeld radiation condition. A first-order ABC (P = 1) annihilates all

fields with up to a u -1 dependency while all higher order fields are reflected

back into the computational domain. For a cylindrical surface, u = x/'fi, thus

the zeroth-order ABC is simply the geometrical optics spread factor while

the first order ABC annihilates fields up to O(p-°°). Evidently, as the ABC

order increases, the reflected fields have an increasingly higher attenuation

factor and hence the boundary may be placed closer to the geometry without

inducing erroneous reflections.

We present the second order conformal ABCs attributed to Chatterjee

and Volakis[2]. In particular, the appropriate expressions for a cylindrical-

rectangular box boundary will be given.

Absorbing boundary conditions provide a local relationship between the

electric field and its curl which may be approximated as

h×V×/_" = _.ff_:+_.V×[h(h.V×ff,')]+_.Vt(h.ff?,s)(14)

10



where Vt denotesthe tangential surfacegradient operator. Unfortunately,
use of (14)would result in an asymmetric system [A -q-I] due to the last
term which possesses only one differential operator. An asymmetric s5,,stem

requires an iterative solver which utilizes two vector-matrix products such

as the conjugate gradient squared (CSG) solver such as the one presented

by [5]. A symmetric system requires only one matrix-vector product if the

BiCG solver is used. Additionally, for symmetric systems, only the upper or

lower triangle of the matrix need be computed and stored.

The gradient in (14) may be approximated by

With both a gradient and a divergence operator present, one operator can

be transferred to the test vector while the other may remain with the source

vector. Hence, the resulting matrix may be symmetric since both the test

and source fields are differentiated. With (15), (14) may be written

fi×V×/_s = _./_:+_.V×[fi(fi.V×/_')]+_-Vt(V-/_:)(16)

For the basis vectors used in [1], V./_ is always zero on S abe and hence

the third term of (16) will not contribute to this form of the ABC. For

surfaces with a common constant curvature for both tangential directions

on a surface, this new vector ABC (16) will lead to a symmetric FE system

[.A_[-l]. However, if the principal curvatures on a surface are unequal, the

system will be asymmetric. For either (14) or (16), the three coefficient dyads

are given by

?

2{=E
i=1

=E
i=1

= E (D_
i=1

[4_ - _g + D (jko - _,) + _]
D - A_ - 2xl

l_iti

D - Ax - 2xi

jko+3 ,. (17)

where _q = _1_2. A_ = xl - _2 and D = jko + 5K._ - _

(16), _ must be divided by j ko due to (15).

In the case of
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It is advantageousto considerthe second-orderABC for singly curvedand
flat surfacesseparately.Fora singlycurvedsurface,the unit normal direction

1 and n2 = 0 as before. Afterand curvature parametersare fi = _, nl = -_
somemanipulation, we find that (17) becomes

-5 - j2kop + l + D jko + _b¢ +

2p

j2kop + 1 j2kop - 3

j2kop - 3

Note that/3 is not symmetric unless p _ c_

+ jkoD] _

(18)

where D = jko s
2p"

For the second-order ABC, it is advantageous to segment the matrix entry

[.A -_ll] into three parts. After some vector manipulation, these contributions

are given by
L J

I (2,_bc : Is W[fi.VxW_] [fi.V

i,a,.bc = fs_,¢i_i.[_.V,(fi.i_j)] dS (19)

where i(3).bc is only used for the original, asymmetric ABC (14). Closed form

expressions for these three integrals may be readily found by utilizing the vec-

tor basis functions given in [1]. As mentioned previously, since the principal

radii of curvature axe not identical for a cylindrically curved surface, i(2)abc

will not be symmetric. However, these terms axe asymptotically identical as

the radius of the ABC surface becomes large since the surface will then be

approximately planax. A symmetric ABC may be obtained by dividing both

the numerator and the denominator of I (2)"be by the ABC radius, p, which

results in a symmetric operator.

4 Radiation Integral

Not surprisingly, since the FE-ABC method is being proposed for modelling

more complex geometries than the FE-BI method presented previously by the

12



authors [1], somesupport task suchascomputation of the far-zoneradiated
fields must becomenecessarilymore complex.

The radiation integral for computing the far-zone radiated fields previ-
ously wasconfi-fiedto the surfaceof the cylinder for uncoated antennas. This

field was solely due to radiating magnetic currents in the aperture of the

cavity due to the use of a second kind dyadic Green's function (see [1] for

details). However, when a overlay or a protruding element is present, the

radiation integral must contain such material. Thus, for this work, the ra-

diation integration surface is deformed to contain any material above the

cavity. To do so, both electric and magnetic currents over this blister must

be used along with both the first and second kind dyadic Green's functions.

5 Results

The aforementioned FE-ABC has been implemented and in this section, it

will be used to examine the radiation and input impedance properties of con-

formal patch antennas with dielectric overlays. However, the formulation's

accuracy must first be established via comparison with the FE-BI method

presented previously by the authors [1].

Consider a 2 cm x 3 cm patch antenna residing atop a 5 cm x 6 cm x

0.07478 cm dielectric filled cavity. This substrata has a dielectric constant

of 2.17 and the cylinder radius is 15.27887 cm. The patch antenna is fed as

to excite a pure axial mode (¢, = 0°, z, = -0.375 cm). Figure 2 compares

the FE-ABC and FE-BI formulations. In this, data was taken from 3.0 GHz

to 3.2 GHz every 5 MHz. The agreement is quite good and we find that the

resonant frequency is 3.11 GHz. At this frequency, the H-plane radiation

pattern is shown in figure 3.

The previous example involved a single antenna element placed within

a discrete cavity with a minimal ABC surface. Since no superstrate was

present, the exterior region of the computational domain was limited to the

immediate vicinity of the cavity. However, if a dielectric coating is used, a

continuous wraparound exterior region is desirable. In this way, the physics

involved in substrate mode guided waves is included explicitly in the finite

element analysis. The next example utilizes such a computational domain

where the exterior region extends a full 360 ° around the cylinder while its

axial lengtii is limited, l_urt, ilermore, tile discrete cavity which contains the
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antennaelement is minimized.
To consider the effectof a dielectric overlay, Ke and Wong [6] examined

the antenna usedby Daheleet. al. in [7] which is 3 cm × 4 cm and fed to

excite a pure axial mode (¢s = 0 °, zs = 1.0 cm). The substrate is 0.0795 cm

thick with a dielectric constant of 2.32. Figure 4 compares the H-plane pat-

tern of this antenna for uncoated and with a 0.3975 cm dielectric cover which

is identical in material parameters with the substrate. In this, each antenna

was excited at their resonant frequencies, 3.0 GHz and 2.91 GHz, respectively.

Note that, as one might expect, there is no change between the antenna pat-

tern associated with the coated and uncoated antennas. The agreement with

the corresponding E-plane pattern is shown in figure 5. However, a slight

beam broadening is observed rather than narrowing as predicted by Ke and

Wong [6]. The differences may likely be due to the finite cavity aperture in

our calculations whereas in [6] the coating and substrate were assumed to

cover the entire cylinder. Further communication will be conducted with the

authors of [6] to clear up this area of disagreement.

In the previous example, the resonance frequency was seen to shift due

to the presence of the dielectric overlay. Such a shift is illustrated in figure

6 which shows the input resistance of a 2 cm x 3 cm patch antenna (see

figure 2) with different overlay thickness. In this example, the substrate and

superstrate are identical material (e_ = 2.17).

6 Comments

In this report, we have presented a new application for the FE-ABC method

which has been developed at the Radiation Laboratory: radiation analysis

of conformal antennas mounted on an infinite cylinder. We have sketched

the formulation and presented some initial validation results. Currently, this

new FE-ABC formulation has matched data generated by a FE,-BI method

for uncoated patch antennas. We have presented some preliminary data for

patch antennas with dielectric overlays and are currently seeking appropriate

measured data. In this report, only axial polarization was considered. Cir-

cumferential polarization should also be studied with emphasis on dielectric

overlay effects.

Initial results are promising and correspond to o,',-,-_tation. It should be

stressed that this new FE-ABC approach is considerably more flexible than

14



previously developedFE-BI methodssince it permits material or protruding

elements in the exterior region of the cylinder. We will explore the utility

of this approach for inhomogeneous coatings, complex protruding antennas,

etc. in future reports.
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Figure 2: Input impedancefor the axially polarized patch antenna which is
2 cm × 3 cm in a 5 cm x 6 cm x 0.07874cm cavity. The frequencyrangeis
3.0 to 3.2 GHz with data taken every5 MHz.
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Figure 3: Radiation pattern for a patch antenna which is 2 cm × 3 cm in a

5 cm × 6 cm × 0.07874 cm cavity operated at 3.11 GHz.
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Figure 4: H-plane radiation pattern for a patch antenna which is 4 cm x 3

cm in a 8 cm x 6 cm x 0.0795 cm cavity with different overlay thickness.

The dielectric constant of the overlay and the substrate is 2.32 and the feed

point is {q_s = 0 _,z8 = 1.0 cm).
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Abstract

Conformal antenna arrays are popular for deployment on curved

aircraft, spacecraft and land vehicle platforms due to their inherent

low weight, cost and drag properties. However, to date there has

been a dearth of rigorous analytical and numerical solutions to aid the

designer. In fact, it has been common practice to use limited mea-

surements_and planar approximations in designing such non-planar

antennas. In this paper, we extend the finite element-boundary inte-

gral method to radiation by cavity-backed structures recessed in an

infinite, metallic cylinder. The accuracy of the developed FE-BI code

for a microstrip patch arrays is established by comparison with mea-

surements. The formulation is then used to investigate the effect that

the finite aperture has on the radiation pattern. In addition, the ef-

fect of curvature on resonant frequency, gain, input impedance and

pattern shape is examined.
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1 Introduction

Modern aircraft and missile designs seek to utilize conformal antenna arrays

rather than conventional protruding antennas due to their low weight, low

drag, low cost and flexibility. Although most useful aircraft surfaces possess

some curvature, the vast majority of available design information assumes

planar elements. Indeed, the literature is rich with approximate [1], nu-

merical [2] and experimental [3] design and characterization data for planar

structures. The most common antenna element is a microstrip patch printed

on a dielectric coated groundplane. Dielectric coated cylinders have also been

investigated using approximate [4] and numerical [5] approaches.

Often, it is desirable to enclose each radiating element within a metallic

cavity to suppress parasitic substrate coupling [6]. Approximate methods,

such as the cavity model [1], do not include finite aperture effects since the

radiating currents are restricted to the immediate vicinity of the patch. Most

integral equation formulations such as the one proposed by Pozar and Voda

[2] utilize a grounded slab Green's function in their construction which pre-

cludes practical finite aperture simulations. Recently, Aberle [6] proposed an

integral equation formulation which partitions the geometry into an exterior

half space and an interior homogeneously filled cavity. This approach deter-

mines the electric field attributed to the patch and feed currents and the two

regions are coupled by enforcing field continuity across the finite aperture.

Unfortunately, as with all integral formulations, the linear system requires

O(N 2) storage and considerable computational effort due the fully populated

system and the slowly converging cavity Green's function. The simulation

of large finite cavity-backed arrays using such an approach is therefore not

practical.

An alternative formulation, utilizing the Finite Element-Boundary Inte-

gral (FE-BI) method, was proposed by Jin and Volakis [7]. This approach is

also suitable for inhomogeneously filled cavity-backed antennas recessed in a

metallic ground plane. As with all partial differential equation formulations,

this approach is associated with a highly sparse system which requires only

O(N) storage. Additionally, when coupled with a Conjugate or Biconjugate

Gradient-Fast Fourier Transform (BiCG-FFT) solver, the computational bur-

den is significantly reduced. The FE-BI method has been successfully used

for scattering and antenna performance analysis involving planar platforms.

A similar FE-BI method was proposed by the authors [8] for scattering
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by cylindrical-rectangular and wraparound patch antennas. New divergence
free. high fidelity edge-basedelementswerepresentedalong with an efficient
solution strategy whichexploited anasymptotic evaluationof the appropriate
dyadic Green's function as well as a BiCG-FFT solver. The resulting com-

puter code was shown to accurately compute the scattering by both planar

and highly curved elements. This paper investigates the accuracy and utility

of such a FE-BI formulation for antenna performance analysis. The radiation

pattern of a single element as well as that of a wraparound array is compared

with measured results. The importance of modelling finite apertures is exam-

ined and in addition, the effect that curvature has on the resonant frequency,

gain, driving point impedance and pattern shape is quantified.

2 Formulation

In this section, the FE-BI formulation appropriate for radiation analysis is

developed for cavity-backed antennas recessed in an infinite metallic cylinder

(see figure 1). As usual, the finite element formulation permits substantial

modeling flexibility, including cavity inhomogeneities, lumped loads and mi-

crostrip feeding lines.

The FE-BI formulation begins with the weak form of thevector wave

equation followed by specification of appropriate vector shape functions and

dyadic Green's function. The resulting FE-BI equations are then used to

solve for the total electric fields within the cavity and on the aperture (for

further details, see Volakis et al. [9]). The weak form of the wave equation

can be written as

__Ej{ fv, [ V x lTcj(p,¢'z)" V x ff'i(p'¢'z)j _,,(o,¢,_)

-k2oe,.(p, ¢,z)l'_rj(p, ¢,z) • I_Ti(p, ¢,z)]pdpdCdz

Is, z). z)×
z')] _0'az'aOaz} = (1)_o_(a,_,_) × p(a,¢"',z'). _j(a,¢', f'"'

In this, l_i are vector basis functions with support limited to the finite el-
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Figure 1: Illustration of a typical cavity-backed antenna situated on a metal-

lic cylinder and the associated coordinate system.
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ement volume _.i which is associatedwith the i th degree of freedom, and in

a similar fashion. S, and Sj represent aperture surfaces associated with the

i th and jta degrees of freedom, respectively. The appropriate dyadic Green's

. o' ')function is denotedbvG,_ and it hasconvolutional(o=o- , 5=z-z

form when evaluated on the surface of the cylinder, p = a. The unprimed

coordinates represent the test point while the primed ones denote the source

point and (p, _, z) are the usual cylindrical coordinates. The free-space prop-

agation constant is given by k0 = 2,_ where A0 is the free-space wavelength.
A0

The cavity is filled with an inhomogeneous material having relative consti-

tutive properties ¢, and #_. The function 6_(i)6a(j) identifies when both

the source and test unknowns belong to the aperture and accordingly con-

tribute to the boundary integral sub-matrix. The FE-BI equation (1) may

be rewritten in matrix form as

(2)

where the entries of [.A] are due to the FE portion of the formulation and [_]

is the boundary integral sub-matrix. In (2), E_ 'p and E} "t denote degrees of

freedom associated with the aperture and interior fields, respectively. In (2),

f/,,_t represents the internal excitation and for this paper, a radially oriented

probe feed is considered.

The vector elements, dyadic Green's function evaluation, matrices [.,4]

and [G] and the far-zone field formulae are given in [8] and are therefore not

repeated here. The interior source function is given by

_Tx
¢,z)

+ jkoZoY"'(p,¢, }. Yc,(p,¢, z)p dp dCdz

(3)

where a_,,t and ,_rint are the impressed electric or magnetic current densities.

For a radially (t_) directed probe feed, the impressed current located at (4_,, z,)

is given by

2"t = t_10 6(¢-¢°)(z- zs) (4)
P
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and (.3) becomes

•o--7-,n [(o, - o,) (z, - _i)] (5)
_ig/i

if the edge-based elements introduced in [8] are used.

Having computed the finite element and boundary integral matrices as

well as the internal excitation, the BiCG method is used to solve for the

unknown electric fields throughout the computation domain. Given that the

FE matrix is highly sparse and symmetric, the BiCG method is a well-suited

choice among iterative solvers. It is also important to note that the matrix-

vector product associated with the boundary integral can be performed using

FFTs resulting in a reduced storage and computational burden. The com-

puted electric field within and on the aperture of the cavity may now be used

to compute antenna parameters such as the gain and the input impedance.

The radiated magnetic field is computed by integrating the aperture fields

with the far-zone dyadic Green's function given in [8]

jLkoa ¢; a,¢, z').

(6)

where (r,0,¢) indicates the observation point in spherical coordinates. The

far-zone electric field may be obtained from (6) in the usual manner. The

radiation pattern, directive gain and other useful antenna parameters may

be calculated using (6). For example, the antenna gain may be computed

from the far-zone electric field as

[ 1 [1]Gas(O,¢) -- 101Ogao 4rrlE"(0,¢)[ 2 + 101Og,o _ (7)

where Ri, is the input resistance which is given below and E" is the radiated

electric field as r ---* o0.

In addition to the antenna gain, designers are concerned with the in-

put impedance of an antenna for feed line matching purposes. The input

impedance is comprised of two contributions [10]

Z,. = Zp + ZD (8)
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where the first term is the probe's self-impedanceand the secondterm is
tile contribution due to the presenceof the patch. The probe self-impedance
accountsfor the finite radius of the probe and hencecan beomitted when a
zero-thicknessprobe is assumed. Accordingly, the driving point impedance
may be found -b_'calculating the voltage between the patch and the cavity
base

i £ Y_(p,¢,z). J-_'(p,C),=)pdpdod= (u)Zi,_= ZD -- i_°

where the impressed current is given by (4), Vi refers to the volume of the

finite element which contains the probe-feed, E(p, ¢, z) is the interior field

and Io is the constant current impressed upon the probe. Substituting (4)

into (9), for the cylindrical edge elements presented in [8], it follows that the

input impedance if given by

z,. = (lo)
i-= l

where

is the contribution due to one of the four radial edges of the element con-

taining the probe.

3 Results

Two types of antenna elements are considered in this paper and they are

shown in figure 2 where each patch is aa ° x b in size with a denoting the

radius of the cylinder. Although the FE-BI method permits mixed-mode

feeding, for this paper it is convenient to consider only the two lowest order

non-hybrid modes. A patch whose radiating side walls are axially oriented

is termed an axially polarized patch and is fed at ¢o = _. Circumferentially

(or azimuthally) polarized patches have radiating walls forming constant z-

_ b The 0 90 ° cut is the E-planesurfaces and are typically fed at zs - 3" =

for circumferentially polarized patches and the H-plane for axially polarized
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Figure 2: Illustration of (a) a circumferentially polarized.patch element; and

(b) an axially polarized patch element. The radius of the cylinder is denoted

by a.
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elements. Observation is consideredin the 0 = 90 ° cut/plane since creeping

wave effects are a primary interest of this paper.

Several computed and measured antenna patterns have been published

for patches printed on a coated cylinder. One such patch, which is 3.5 cm x

3.5 cm, was used by Sohtell [11] to compare the accuracy of the cavity model

[4] to a surface current integral equation [5]. The measured data was taken at

2.615 GHz for a metallic cylinder which was 63..5 cm long and had a radius of

14.95 cm. The cylinder was coated with a 0.3175 cm uniform dielectric having

relative permittivity of e, = 2.32. Data was taken for -180 ° _< ¢ _< 180 ° in

the 0 = 90 ° plane. Figure 3 compares these measured patterns with data

generated using the FE-BI method for an identical patch placed within a

360 ° x 7 cm cavity. This wraparound cavity was chosen to simulate the

coated physical test body. Note that the H-plane patterns are symmetric

due to the symmetric placement of the feed, whereas the E-plane patterns

are not symmetric. The placement of the feed was not specified in [11];

however, the agreement for the E-plane pattern shown in figure 3 indicates

that the position used in the FE-BI model (aCs = -1 cm) is reasonable. The

feed was placed at zs = -1 cm for the axially polarized (H-plane) case.

We next consider patch arrays. Being a rigorous method, the FE-BI

formulation accounts for mutual coupling and cavity termination effects. The

H-plane pattern of a four element array was measured to gauge the accuracy

of the FE-BI approach. Each element is 2 cm x 3 cm and placed within a

5 cm x 6 cm x 0.07874 cm cavity which is filled with a dielectric having

e_ = 2.17. The cylinder is 91.44 cm long and has a radius of 15.24 cm.

The cavities are placed symmetrically around the cylinder (e.g. a patch is

centered at 0°, 90 °, 180 ° and 270°). Only the patch centered at 0 ° was excited

while the remaining patches were terminated with a 50f_ load. The driven

patch was axially polarized and the feed was located at zo = -0.375 cm.

Figure 4 illustrates the excellent agreement between the FE-BI formulation

and the measured data.

In a previous paper [8], discrete wraparound cavity arrays were found to

have a significantly lower radar cross section (RCS) compared to a continuous

wraparound cavity array. Thus, the size of the cavity had a significant effect

on the scattering properties of the array. The two antennas presented by

Sohtell [11] were placed within individual cavities which were 7 cm high and

approximately 30 ° , 50 ° , 90 ° , 180 ° , 270 ° or 360 ° in angular extent. Figure

5 illustrates that the azimuthal cavity size has little effect on the radiation
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Figure 3: Comparison of measured and computed data for a circumferentially

polarized element (E-plane) and an axially polarized element (H-plane). The

antenna (3.5 cm x 3.5 cm ) was printed on a 14.95 cm cylinder with a 0.3175

cm coating (¢_ = 2.32). The probe feed was place at (a_b,,z,) = (-1.0,0.0)

for the circumferentially polarized patch and at (a_bs, z,) = (0.0,-1.0) for the

axially polarized antenna.
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Figure 4: H-plane pattern for a four element patch array. Each patch is 2

cm x 3 cm and the patches are placed symmetrically around the cylinder.

Only the patch centered at 0 ° is fed while the other patches are terminated

with 50fl loads.
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Figure 5: Effect of cavity size on the E-plane radiation pattern of a circum-
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pattern for a circumferentially polarized element and a similar comparison for

the axially polarized patch is shown in figure 6. The back lobe of the antenna

(near o = 180 °) is very small for cavities less than 180 ° but increases for larger

cavities. For cavities which lie solely on the forward face of the cylinder, the

substrate modes apparently diffract off the cavity walls; an effect which has

little influence on the main lobe of the pattern. However, for wraparound

cavities and cavities which extend into the back side of the cylinder, the

substrate modes either shed like creeping waves or diffract strongly behind

the cylinder thus giving rise to the back lobe.

Having examined the effect of cavity size on the radiation patterns, we

will now look at the effect of curvature on the gain of patch antennas on

cylindrical platforms near resonance. Each of the two antennas used above

were separately placed within 10.5 cm x 10.5 cm cavities which were em-

bedded in cylinders with increasing radius. The frequency was allowed to

vary from 2.4 GHz to 2.7 GHz and the gain (7) was recorded every 5 MHz.

Figure 7 illustrates that the gain decreases with increasing element curvature

for a circumferentially polarized patch. Since the input impedance is only

slightly affected by curvature as shown in figure 8 the resulting decrease in

gain implies a decreased radiated power which is expected since the effective

aperture area observed normal to the patch is reduced as the curvature in-

creases. The axially polarized patch exhibits a greater decrease in gain with

increasing curvature as shown in figure 9. For this polarization, the input

impedance is affected by curvature as shown in figure 10. The enhanced

sensitivity of the axially polarized antenna is due to the combined effects

of a decreased radiated power and driving point impedance. Both antennas

exhibit a small decrease in resonant frequency (less than 1.5 percent) with

increasing curvature as illustrated by the rotation of the curves in figures 8

and 10.

The radiation pattern of a circumferentially polarized antenna at res-

onance exhibits reduced creeping wave interactions with decreasing curva-

ture due to attenuation as shown in figure 11 when excited at a resonant

frequency. For circumferentially polarized E-plane observation, the radiat-

ing surface fields are aligned along the C-axis which results in little pattern

broadening. The radiation pattern of the axially polarized antenna broadens

as the curvature increases which is illustrated in figure 12. Since the radiat-

ing aperture fields are aligned along the _-axis for axially polarized H-plane

observation, the pattern exhibits broadening due to the orientation of the
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Figure 8: Input impedance of a circumferentially polarized patch antenna for

various cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and the

cavity size was 10.5 cm x 10.5 cm.

36



0

H

H
-e-

l=
° ,l,,-+

¢::I

10.0

9.0

8.0

7.0

6.0

5.0
2.40

I I I I I

a= lOcm

......... a = 14.95 cm

...... a=2Ocm

...... a= 200cm

_° +o __ °o.. +°° o_ oo ..... o ...............................

...... ...........................................................

.... I .... I .... I .... I I

2.45 2.50 2.55 2.60 2.65 2.70

Frequency (f) [GHz]

Figure 9: Gain (7) of an axially polarized patch antenna near resonance for

various cylinder radii.

37



a= lOcm

....... a = 14.95 cm

..... a= 20¢m

.... g = 200 cm

Figure 10: Input impedance of an axially polarized patch antenna for various

cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and the cavity
size was 10.5 cm x 10.5 cm.
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surfacefield with respectto the observationdirection.

4 Conclusions

In this paper, we presented a rigorous analysis of the radiation by individual

and arrays of patches placed in a cavity recessed in a cylindrical platform. A

finite element-boundary integral code was developed and the data generated

by this code for a typical cylindrical-rectangular patches were found to com-

pare favorably with measurements. Since the cavity model does not include

mutual coupling and the usual integral equation formulations requires large

storage and computational resources, the FE-BI formulation is especially

attractive for array analysis.

This FE-BI method was used to study the radiation properties of circum-

ferentially and axially polarized patch antennas. The finite cavity size was

found to have little effect on the circumferentially polarized E-plane pattern.

However, for the H-plane pattern of an axially polarized element, the back

lobe is significantly larger for cavities which extend from the front side to the

back side of the cylinder. A wraparound antenna exhibited the largest back

lobe implying that this lobe is a result of creeping wave shedding rather than

diffraction off the lateral metallic walls of the cavity. The presence of a back

lobe must be considered when designing low observable, jam-resistant anten-

nas or antennas on complex platforms (e.g. an antenna near an obstruction).

Thus, as was the case for scattering reduction, it is advisable to configure

the patch antenna in the smallest possible cavity.

The effect of curvature on resonance, gain, radiation pattern shape and

input impedance was studied. Both circumferentially and axially polarized

antennas were considered and was found that the resonant frequency in-

creased with increasing curvature for both antennas. The gain of both types

of patch antennas decreased with increasing curvature with the axially po-

larized antenna exhibiting greater sensitivity attributed to the orientation

of the radiating surface fields and the decreasing driving point impedance.

The radiation pattern for axially polarized antennas broadens with increasing

curvature while the corresponding patterns for circumferentially polarized an-

tennas does not broaden; however, creeping wave interactions are reduced for

the latter element with decreasing curvature as expected. We conclude that

axially polarized antennas exhibit more sensitivity to curvature as compared
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to their circumferentially polarized counterparts.
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Scattering by Cavity-Backed Antennas on a

Circular Cylinder
Leo C. Kempel. Student Member. IEEE. and John k. Volakis. Semor Member IEEE

Absrract---Conformaiarraysarepopularantennasforaircraf_
spacecrai'_and land vehicleplatformsdue to theirinherent
low weight,drag,and observables.However, todate therehas
been a dearthof rigorousanalyticalor numericalsolutionsto
aid the designer.In fact,ithas been common practiceto use
limitedmeasurementsand planarapproximationsin designing
such nonplanar antennas.In thispaper,we extendthe finite
element-boundaryintegralmethod toscatteringby cav/ty.backed
structuresin an infinite,metalliccylinder.In particular,we
discusstheformulationspecifics,suchasweightfunctions,dyadic
Green'sfunction,implementationdetails,and particulardiflicul.
tiesinherentto cylindricalstructures.Specialcare istaken to
ensurethatthe resultingcomputer program has low memory
demand and minimal computationalrequirements.Scattering

results art presented and validated as much as possible.

I. INTRODUCTION

C ONFORMAL antenna arrays are attractive for aircraft,
spacecraft, and land vehicle applications since these

antenna systems have low weight, low drag, flexibility, and

cost advantages over conventional protruding antennas. The

majority of previous studies pertaining to nonplanar conformal

antennas has been conducted experimentally due to a dearth of

rigorous analysis techniques. Traditional rigorous techniques

involve an integral equation and are limited in terms of radius

of curvature and structural complexity. Some approximate
methods have been considered, but these are restricted in

accuracy and element shape.

Recently, the finite element-boundary integral (FE-BI)

method was successfully employed for scattering analysis

of large cavity-backed planar arrays [1]. The resulting system

is sparse due to the local nature of the finite element method,

whereas the boundary integral submatrix is fully populated.

However, by resorting to an iterative solver such as the

Biconjugate Gradient (BiCG) method, the boundary integral

subsystem may be cast in circulant form, allowing use of the

Fast Fourier Transform (FFT) in performing the matrix-vector

products. This BiCG-FFT solution scheme ensures O(N)

memory demand for the entire FE-BI system and minimizes

the computational requirements.

In this paper, the FE-BI formulation is extended to scatter-

ing by aperture antennas conformal to a cylindrical metallic

surface. In contrast to the planar aperture array, the imple-

mentation of the cylindrically conformal array requires shell-

shaped elements rather than bricks, and the required external
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Green's function must sattsf,, the boundar',, condmom, on the

surface of the cylinder. In its exact form. tht_ Green'_ funcuon

is an infinite series that imposes unacceptable computational

burdens on the method. However. for large-radtu_ cxlinders.

a suitable asymptotic formula is available and hereto used for
an efficient evaluation of the Green'_ function. In addition.

the resulting BI system is again cast m circulant form to

ensure an 0(3,') memor]: demand and to take advantage

of the FFT's efficiency, when carrying out the mamx-vector

product.

A primary difficult?' in stud?ins cavity-backed antenna,,,
mounted on curved surfaces is the lack of reference data.

In this paper, scattering calculations based on the FE-BI

method are compared with data based on different techniques.

Although such validation is necessanlv limited, it provides

confidence in the formulation's accurac,_ so that this ap-

proach may be used in extending the available reference
data.

An alternative approach for terminating the FE mesh is to

use an absorbing boundary condition rather than the exact

boundary integral used herein. The finite element-absorbing

boundary condition (FE-ABCI method is associated with

a higher CPU cost because of its enlarged computational
domain; however, it is more flexible than the FE-BI method

presented in this paper since it may include a complex

radome as well as the cavity-backed antenna elements. Such
an FE-ABC formulation will be the subject of a future

paper.

II. FE-BI FOR CIRCULAR CYLEN'DERS

In this section, the FE,BI formulation is developed for

cavities recessed in an infinite metallic cylinder, having walls

that coincide with constant p-. _- or z-surfaces _see Fig. IL

As usual, the finite element formulation permits substantial

modeling flexibility, including cavity inhomogeneities, lumped

loads, super/substrate antenna configurations, or microstnp
lines and so on.

The FE-BI approach possesses both log memora and

computational demand when implemented v,'ith a BiCG-

FFT solver. Although the system of equations associated

with the FE formulation is sparse, the boundat2," integral

submatrix is fully populated. However. if the aperture mesh

is a uniform grid, the BiCG-FFT solver may be emplo,_ed

for that portion of the system, thus retaining 0(.\_ memory

demand for the entire system. In addition, the solver has

low computational demand since the sparse mamx-_ector

0018,-926X/nat''" "" © 1994 IEEE
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ducts require O(N) operations per iteration and the

;crete convolutions that utilize FFTs require only O(NlogN)

erations per iteration.

The FE-BI formulation begins with the weak form of the

:tor wave equation followed by specification of appropriate

:tor shape functions and a dyadic Green's function. The

ulting FE-BI equations are then used to solve for the total

ctric fields within the cavity and on the aperture (see, for

u'nple. Volakis et aL [2]). For the specific configuration at
_d, the weak form of the wave equation can be written

{V× ff'_(p.o.z).V× -'
_,(p.¢.z)

- k2o_tp.o.z)[T'j(p.o.z) • l_;(p.o.z)}pdpdcdz

+ (koa)%o(j)_o(_)fs, fs [',(a. _. z)._(a.C_.z)x

_2(a. $. 2) x p(a. 0'. z). 14"_(a.O'.z')]d¢' dz'dCdz

= f:"'+ f:_'. (l)

this.if',are vector basis functionswith support over

volume }]. which is associatedwith the ith degree of

dom. and ina similarfashion.S, and Sj representaperture

aces associatedwith the ith and 3th degrees of free-

1. respectively. The appropriate dyadic Green's function

enoted by G2, and it has convolutional (0 = O - 0,

2 = .- - --') form when evaluated on the surface of the

cylinder p = a The unpnmed coordinates represent the te_

point, while the pnmed ones denote the source Im_mt. The

free-space propagation constant is gwen by k(, = ._S, _here

_0 is the free-space wavelength. The cavir, is filled _ith an

inhomogeneous matenal having relative constitutive propeme>

e, and _. The function bo(Z)_o(ji is the product of two

Kronecker delta funcuons. Hence, it tdenufies v,'hich patr_ of

unknowns belong to the aperture and accordingl) contribute to

the boundary, integral submatnx. The nght-hand side contaln_

an internal source (f:'_l and an external source If: .rj term

The former is used only for radiation arlalysis and _s omitted

for this paper. The latter is used for scattenng anal)s,s and _,
discussed later.

The FE-BI equation

{E; '_' }

where the entries of

formulation and [g] is

(1) may be rewritten in mamx form a>

÷ {o]]{E;'} I:: (:)
L[O} [o]j{E?'} =

[A] are due to the FE portion of the

the boundary integral submamx. In (2),

E_ v and Ej '_t denote degrees of freedom associated with the
aperture and interior fields, respectively.

An important factor in choosing the finite elements for

gridding the cavity is the element's suitabilit-y for satisfying

the mathematical requirements of the formulation as well as

the physical features of the antenna system. Traditional node-

based finite elements associate the degrees of freedom with

the nodal fields and have proven unsatisfactory for three-

dimensional electromagnetics applications since they do not

correctly represent the null space of the curl operator, and

hence spurious modes are generated [3]-[4]. In contrast, edge-

based elements correctly model the curl operator and therefore

the electromagnetic fields. In addition, edge-based elements
avoid explicit specification of the fields at corners where

edge conditions may require a singularity. Jin and Volakis [6]

presented edge-based brick elements, which are convenient for

rectangular-type structures and cavities. For cavities residing

in a circular cylinder, shell elements are the natural choice.

Cylindrical shell elements possess both geometrical fidelity

and simplicity for cylindrical-rectangular cavities. Fig. 2 illus-
trates a typical shell element, which has eight nodes connected

by twelve edges: four edges aligned along each of the three

orthogonal directions of the cylindrical coordinate system.

Each element is associated with twelve vector shape functions

given by

ff'_4(p. ¢. z) =

ff%(p. :) =
ff"5_(p, v. z) =

ff'_7(p, o. z) =

ff'o(p. _. z: p_... z¢. + ).

ff'_(p, o. :: po.-. :,. - )

ff_(p, o. z: p_... z_. - 1.

ff'_(p, o. z: p_... z_. +)
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Fig. 2, Cylinch-ical shell element.

_'ls(p. $. z) -- I_z(P.O.z:Pb,dPr, ",+),

l_'26(p.O.z) = I_'z(p,O,z;pa,¢r,',-)

ff'4s(p,_,, z) = ff',(p,¢, _; pb,¢t,',-),

U'3"(p, ¢, z) "= _,(p. _, z; pa, e_z,•, +) (3)

where l_'tk is associated with the edge which is delimited

by local nodes (l. k). as shown in Fig. 2. As seen from (3),
three fundamental vector weight functions are required for the

complete representation of the shell element. They are

ff;(p, ¢. z: _. ¢, _, S) = _P__2(_ - 5)(z - _).
oth p P

ff'_(0,,_, z; _. 5. z. _) = T_(0- _)(z - z)6

ff,(p,,_,. ;:_.6. z,s)= G(p- _)(¢- 6)_ (4)

where the element parameters (p,, Pb, ¢1, ¢_, zb, zt) are shown

in Fig. 2, t = pb- P,,, a = ¢_- ¢1, and h = zt - Zb.
Each local edge is distinguished by _, ¢, £, and ._ as given

in (3). The -1-term, which appears in the definition of the _-
p

directed weight (4), is essential in satisfying the divergence

free requirement, i.e.. so that _' • I_ = 0) Note that as

the radius of the cylinder becomes large, the curvature of

these elements decreases, resulting in weight functions that

are functionally similar to the bricks presented by Jin and

Volakis [6]• Having specified the vector basis functions, we

may proceed to develop the matrix entries for the system (2)•

The FE-BI system is composed of two parts: a sparse FE

matrix and a fully populated BI submatrix, as shown in (2).

I l_',( p. o. : ) will satisfy this requirement only within the volume of the

element These weightin_ functions introduce artificial charges on the faces of

the element and are nm divergenceless at element interfaces. This is allowable

since these elements do not guarantee normal field continuity across t.he

element faces.

The FE mamx enmes are represented b_

Z Ti l'!t3 " '' _U

A,: I._,--st

where constant material propcr'ues have been assumed w/then

each element. The subscripts __,.)) refer to the row and column

of the matrix entry and correspond to the test and source edges,

respectively. The auxiliaD.' functions

I(_" f V x t,t'o(p._.z:b:•%._.._ _)lit
J'_

. _" x '_'['_(p.O.z: p,.6,• :-.,._',,)pdpd_dz

I(_)'_= [
J_

•PVt(p, ¢). z: _,. _,. i,. _,)pdpdc_dz (6)

are identically zero unless both test and source edges share

at least one element in common, resulting in a highly sparse

system. Physically, such a system is a consequence of the

locality property inherent in a partial differential equation

formulation. In (6), the direction of the source and test edges

are represented by (s.t) E {p,q_.z}, respectively. Since

the edges of the mesh are aligned along three orthogonal

directions, only six unique combinations of (s, t) are required
for I(_), and only three such combinations for I (_). Since (6)

is symmetric with respect to source and test edges, the FE

matrix will also be symmetric. Evaluations of (6) using (4)

are presented in the Appendix.

A lumped impedance post may be included in the formula-

tion by adding a term to (1) and equivalently to (5); surface or

subsurface metallization layers may also be modeled. Radially

oriented lumped loads are approximated in the FE-BI formu-

lation by a filamentary load located at (¢c, zz,) [2]. Such posts

have length l, cross-sectional area s and impedance ZL. The

contribution to {A] is given by

• _l f _(¢ - CL)_(Z -- z_)AO Jk°Z°s_t. ._, p

• Wi(p, ¢, z)Wj(p, ¢. z)pdpdCdz (7)

which may be readily evaluated in closed form. In addition.

infinitesimally thin metallization layers may be represented

by simply fixing a priori the weight coefficients to zero for

weights associated with edges which are tangential m the

metal. This is a consequence of using a total electric field

formulation. The symmetry and sparsity of the FE system !.4]
is maintained after the addition of these loads, while the BI

system [(_] remains fully populated and symmetric.

The boundary integral provides an exact boundar2:' condmon
for mesh closure, and its construction relies on a cylmdncal

dyadic Green's function. The entries of the boundar3, integral
submatrix art

G, = (koa) _ We(a, ¢. z: i_,, _P,.:,. _,'
i 3

[ -- l
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Fig. 3. Geodesic paths on a ctrcular cylinder.

where the weight functions are given by (4) and evaluated

at the surface p = a. In (8), the dyadic Green's function

(G2) satisfies both the radiation condition, and the Neumann

boundary, condition at p = a. This dyadic Green's function

may be expressed exactly [8]

a:-'/a. _. _)

(2rr) 2 ,=-_ _ \ko) "r H',_I21(._) eil'_-_''_tdk:
m

G°=(a._._.)

- i_ _1 nk. ,,n t,__.__.._Je.7(n_-k:_)dk

(2_)2 .=__ _ H',,(2i(.-,) :

a'>_'(a,8,_)

12"r)2 .=--,c _ "

H,,"(,', )
(9)

where "_ = kpa and k_, = x/_ - k_. However, for large radius

cylinders (e.g., ka _> 3). (9) is computationaily prohibitive. In

these cases, which are of main concern in this paper, it is

advantageous to employ an asymptotic expression for G2 [9]-

[ 12]. These employ a creeping wave series expansion of which

only the two direct path contributions (see Fig. 3) are retained.

The formula due to Pathak and Wang [9]

3ko jkos
G:"(a. o.._)_ --_-qe-

f 1

- _ico,C#-q!l -q,i'2- :1_,,.:. , .,
1

sin0cos0/I, 1 - 3q_l - q,, v_._' }
q

k ]

G _:1 a, c_. 5 b .... q_
2:

• (sTn'O-,-q(1 -q)(2-3,_n:_,_, ._

}*q sec'O(ut.Ti- r(._))l I I()_

..L ha.',proven quiIcwhere '3 = _°L,'2_o--'_J and q = _..
accurate. In the definition of ,3. s is the usual geodesic path

length (s = 4(adP)2. z 2) and 8 is the direction of the

of the two direct paths (shown in Fig. 3t is used. _ = c; or
_ = 2_r - _. The soft and hard Fock functions, ut3) and

v(3), respectively, are characteristic of on-surface creeping

wave interactions and have been extensively investigated bv

Logan [13]. These functions are also presented in the appendix

of this paper. Although computation of the Green's function
(10J is now tractable, evaluation of (8) must be done so that a

discrete convolutional system is maintained and the singularity

of (8) at s = 0 is properly treated.

Care must be taken in evaluating (8) so that the overall

storage requirement remains O(N) and the singular integrals

of (8) are accurately computed. If uniform zoning is used, the

resulting submatrix ([_]) is block Toeplitz and hence amenable
to solution using the BiCG-FFT method. For the nonself-

cell contributions, midpoint integration may be used while a

regularization procedure must be employed for the self-cell.
Bird [12] noted that (8) recovers the metallic screen Green's

function when _ = 0 within the available approximation

order. This suggests that (8) may be regularized by adding

and subtracting from (10) the function

2Go(a.6.;z)= + 2,"rB : B= i F'-F'I Ill)

which is the free-space dyadic Green's function multiplied

by two. The resulting regularized Green's function icur'vature
contribution) is given by

JL {dz_(a,O,_) ",. -'""qe -_°" (ct),_2_-r qll - ql
2r

-(2 - 3co_(7))[c(3)- 1]}
#

Ge:(a.o. 5)_ q_ J_ 'sin0cos0 /1-3q(1-qll

•[,'(_)- _}1
J
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jl,,, _j_ ,{(" '" ':" z ' "" 2= q' __;7;:_ -- ql ] - (/_

qisec'-O(ut.4_- r_.'J_ I (12)
J

and since it is no longer singular it ma) be evaluated numen-

call). The planar contribution ma_ be calculated in the manner

de,,cnbed previously b_, Jin and Volakis [5]. The FE-BI mamx

has nov, been full) developed and it remains to specify the
excitation function for external sources.

II1. PL_'_E WaVE EXCFrATION

Plane v,ave excitation of the geometD' is considered in this

section for scattenng analysis. The use of the exact boundar3.

condition in (1) allows coupling of an exterior excitation
field into the cavity. We will describe the form of the source

function f[_-r and discuss its numerical implementation.
The forcing function, due to exterior sources (f[ _'t) ts given

by

ff[" =jZokoa I[',(a.o.z ).D(a.O'.z )
JS,

×I]_l(a,o'.z')do d:' (13)

where I[,(O. o. z) is the testing weight for the ith row of the

matrix and _ul represents the magnetic field on the cylinder's

surface in the absence of the cavity. A plane wave

/f' = ) _, I_(sin ", cos 8, cos O, - cos "_sin _, )
k.

- O(sin "_cos 8, siti o, + cos _, cos O, )

_ 5sin_,sinO,]e3ko[as,nO, cosd,.... osO,] (14)
d

is assumed to be incident on the cylinder from the direction
((L.o,L where -_ is the polarization angle and _' = (_'cos_ +

#sin ", is the electric field polarization. In these, the difference

between the observation and incidence angles is denoted by

o, = o - o,. The total surface field is given by the sum of

the incident and corresponding scattered field from the infinite

metallic cylinder [141. Specifically.

/7' o, :) =/7'la.o. :)
" rrr_41

= c,n_. + _.H_._; (15)

where

¢.jl_ ro_O z

H"_(,. a. o. = i = -2}], =k,,. siti 0,

t; sin ", ('o,', O,

_'1/,',,..',in 0, HI,':_''" (koasmS,)

• . sin-, t. cos0,
• Ht_;i,.o.z_ = j2_o_d °

_ _'o (1

r ,,,,- ......

[ ,H,." (L',,a,,inO,_

[ COS *,. _ H,,e;(koasinO,)

Cln(_o--&. )

9c.

Z

(16)

is obtained from traditional modal anal)s_s These expressions
ma_ be approximated b,, re_mng onh a fea terms of

the series if k,,a sm V, Is small. Ho_,ever. as tins parameter
becomes large le.g., for large a and 0, -- 9(VL [1_ ma._

be replaced with equivalent asymptouc representations similar
to those considered earlier. Utilizing Watson's transformauon

and Fock theor2,. [14] in connecnon with 1161. v_e find that

H._ -- -)_ sin "_sin O,e _ ..... o,:

[ "• Ze-3koaSmO,dOr glO (rrldi) i !,

p=:

rn 2

H_ vl ".- j2]<_ cos "_koa sin 0, e'_k.... _

2

. Z _ -)k_aslnO'e°r [ t_O[3 _rl--q);,,]"

p=l

- Yo sin ", cos 0,e _° co_ 0, :

• Z(_l)_e-)_o-_,_0,¢, gi°l(rndO_)
p=l

m g(X)(m(b_)] "J koa sin 0---_

(171

in which O_ = -_ - (O - 0,), 02 = (e - O,) - {,

m = [_]t. and complex conjugation is denoted by an

asterisk• The appropriate far-zone Fock functions (9(0_ 9¢_ _,

and f(0)) are given by Logan [13] and are also presented in

the appendix of this paper.

The asymptotic formulas (17) are quite accurate except

in the geometrical optics region (_ _ O,). In this case,

Goriainov's [15] expressions

{ [ 3_ }osinasinOie i_oc°s°,z e-JkoasinO, e°_ g(O)(mdPl )

+ e)l:oasinO, co_(*-*,)[G(_mcos(O - ¢i))]"}
1

c y l _¢Ft 2

H_ ._ j2YocoSakoasinO,

. e_< _o,O,: { e-_o. _i_o,¢, [f(O) ( m._ )] "

%

e, oO 0, cos (o - 0,))]" }+

,I

+ ]o sin o cos 0,e3¢ .... °': { e-Jk°_ _in0'°a_ I.IYI°;(rn_l

lm

J koa sin 0--"_9(_ i(mCh )

_ eJkoastnO, cos(¢.--o,) [a(--172 COS (0 -- 0,))

1}77/

j -- GrZ)(-mcos(o - 0,)) (18)
koa sin O,
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have been found to be more accurate and can be used instead

of(17L The Fock funcuons (G. G _: and F) are agam defined

in Logan [13] and given in the appendix. These surface field

expressions may be used to calculate the enmes of the column
vector {],_zt } efficiently via a numerical evaluat,on of (13). In

parucular, the modal senes (16) is used when koasinO, < 10
and either (17) or (18) for k_a sin 0, > 10. as appropriate. With

the excitation function and the FE-BI mamx nob' specified.

the BiCG-FFT method [16]-[17] ma._ be used to determine

the unknown elecmc fields within the cavib.

IV. Sc ATI-ERLNG

Once the cavity aperture and volume elecmc fields have

be_n determined by solving (2) for an external excitation, the

radar cross section (RCS) may be calculated. The far-zone

fields may be computed by integrating the aperture fields with
a suitable Green's function. In this section we present the

relevant formula for calculating the far-zone fields and hence

the RCS due to excitation by a plane wave (14).

To determine the far-zone fields, we begin with the integral

representation for the scattered magnetic field in terms of the

aperture fields. We have

H'(r.O.O) = j)okoa _ _2(r. O.o:a.¢'. z')

[ff(a.O'. z') x e(a._'.z')]dO'dz' (19,

with (r. 0, a_, indicating the observation point in spherical

coordinates. When the observation point is very far from the

cylinder, the dyadic Green's function in (19) can be replaced

by its far-zone representation

G2(r.O.O:a.o .z )

~  -J o__2[Goo0 +ao.o +aoo  '] (2o,
kor

where the unprimed unit vectors are functions of the ob-

servation position and the primed ones are functions of the

integration point in (19). The components of this far-zone
Green's function

GO. j _ 2ko cos O k _ '
(fir)" (koasinO) 2

n__ e:,_ ::_io_,d l)m

,=__ H',I2_(koa sin 0)

GOz ,-,, j 2 esko cosO:'
(2r,) -_,

1 (5.(o_¢'))• i 2, e3 n

.... H,, (koasinO)

GOo _ j 2 . jkoCO_O:'
(2r:) _ asinO e

• _ 1 esn(5-'(° -°')) (21)

,,=__1""H_2i(koa siu 0)

are determined by a mode matching procedure. As one might

expect, these series converge rather slowly for large koa sin 0.

50

The,, must therefore be recast in another lol-m bx mph,)-

ing Watson's transformatton and Fock theol, a. _a, done

previousl) (17L In domg so. v,e obtam

.

kocoSOeskoco, e: _,_1!_,-_ ...... "+GoO z...,4=
p=l

. .

TN :• 9_°_(mOpl-jk,.asinO9 r','q_t

kosinO ....... _ _,_ ......,_ . "GO: CJ ko _ : _l lit(lit

4r_ Z--,

17,12 - ..

Go® -.. ej_ .... _: Z _ -sk_..¢,: ; r ,,,'l';
2at sin 0 '

p=l

where the Fock functions are the same as those used v, ith

(17) due to reciprocity. As was the case for the plane v, axe

source. Goriainov's [15] approximations are more accurate m

the geomemcal optics region (0 w. o) and similar express,on,

may be obtained for (22). as was found for 1171. The far-zone
scattered field can be computed numerically by using 1191 and

either the series or asymptotic formula as appropnate. Having

done so. the RCS is calculated from

a(O.o) = lim 47rr 21-_(r'(4'O)t (23_
"-_ IE'(r. 0. o)1

Above we presented a FE-BI formulation suitable for mod-

eling cavity-backed structures embedded in a circular cylinder.
Next, we consider a few numerical calculations aimed at

validating this formulation and giving us an appreciauon

on how the cylinder's curvature influences the scattenng

parameters.

V. RESULTS

Having solved for the electric fields induced by an incident

plane wave. the resulting RCS data must be validated with

known results. As previously mentioned, available measured

or computed data is rather scarce, and as a consequence we are

forced to rely on limiting cases-in order to validate this work.
As the radius of curvature decreases, a cylindrical-rectangular

cavity will approximate a planar-rectangular cavity. Another
limiting case involves comparison of an elongated 3-D cavit_

with a corresponding 2-D cavity for normal incidence (0, =

90°). Finally. we may compare our infinite cylinder result_

with a finite body of revolution (BORI model for certam

polarizations and angles of incidence. We begin v..ith thc

quasiplanar case.
The first validation effort for scattenng b_ cavit}-backed

patch antennas relies on the fact that a small patch on a _erx

large radius cylinder is quasiplanar and approximates rather

well an equal sized planar patch• For our test we chose as a

reference a planar 3.67b cm × 2.75 cm patch residing on a

7.34 cm x 5.334 cm x 0,1448 cm cavity filled with a dielecmc

having e,- = 4. The equivalent patch on a 32.6 cm c,,ttnder ,s

6.46°x 2.75 cm residing on a 12.9(Vx 5.334 cm x _kl-14,',
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cm cavity. At the operating frequency of 9.2 GHz, the cylinder

has an electrical radius of 10An.

Fig. 4 shows the results for the patch on a large radius

cylinder with corresponding data for the planar cavity-backed

patch. Clearly, the two RCS patterns are in excellent agree-

ment, and although Fig. 4 illustrates only monostatic scattering

in the ¢ = 0 ° plane, additional runs for normally incident

monostatic scattering and various bistatic situations yield

similar agreement.

Comparisons may also be made for elongated cavities and

2-D MoM results. Long narrow cavitie_ have very little axial

interaction for principal plane (O = 90 °) excitation and

therefore results based on this formulation should compare

well with corresponding 2-D data. It is well known that the

RCS of a 3-D scattering body of length L _3, A0 is related

to the corresponding 2-D scattcnng of the same cross section

via the relation

0"3.9 = 2(----L _ :_O'":'D. (24)

Such a comparison is shown in Fig. 5 for monostatic

_cattering by a 45 ° x 5A x 0.1A cavity recessed in a cylinder

with a radius of 1An for both principal polarizations. Once

again the agreement between the two results is excellent,

Jaus providing a parual validation of the formulation for

aighly curved geometries. We remark that similar agreement

ms been observed for bistatic scattering in the /9 = 90 °

)lane.

The planar approximation eliminates the effects of curva-

are, which is a primary interest in this work. and the 2-D

omparisons done above are only valid for normal incidence

nd observation. To consider oblique angles and a highly

urved structure, we resort to comparisons with a body of

:volution (BOR) code for wraparound cavities. Since the

OR code can only model finite structures, we simulate an

tfinite cylinder by coherently subtracting the far-zone fields

20.0

10.0

_ 0.0
e,,,
.__

-1o.0

-20.0
0.0

_++++r ........ r ........ I ........ r......... r......... r ........ r ..... i ......

I-+++1o BOI_

/

.................... l ......... I.. +_.+.I ......... I ........ I .............

LO.0 20,0 30.0 4010 SO+0 _10 70.0 80+0 _,(

Observation Angle (0) [deg]

Fig. 6. Comparison of the RCS computed via the FE-BI method and a BOR
code for a 3A0 x O+1A0 air-filled wraparound cavity recessed in a cylinder with
a radius of 11o that is excited by a normally incident H-polarized (a = 9{9° )
plane wave

of the finite structure without a cavity from similar data

which includes the cavity. Such an procedure mimics common

measurement practices and was found suitable for near normal

incidence and quite acceptable near grazing incidence in the

case of H-polarization {a = 90°). An example calculation for

the former case is given in Fig. 6. where a bistatic scattering

pattern is presented in the o = 0 _ plane due to a plane

wave incident at (0, = 90°,_, = 0°). Clearl). there is good

agreement between the FE-BI results and data based on the

BOR formulation.

The previous comparisons serve to validate the formulauon+

Having done so, it is instructive to examine the effect that

curvature has on the scattering properties of cavity-backed

patch antennas. Consider a 2 cm × 3 cm patch residing on a :,

cm x 6 cm x 0.07874 cm cavity that is filled with a dielectric

having e_ = 2.17. The cylinder has a radius of 15.25 cm 1:i_,_
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)r E-polanzauon (o = 0 ° ).

and 8 illustrate the behavior of this geometry as a function

,f frequency and curvature.

Evidently, the resonance behavior of this patch is sensitive

) curvature for both principal polarizations. The frequency

esponse for E-polarization is more sensitive to curvature since

ae radiating surface field component is parallel to the long side

,f the patch and cavity. If the patch and cavity were oriented
o that the long side is in the 0 direction, the response to H-

_)larization would exhibit greater sensitivity. Such an effect

s important to low observable antenna designers since they

rant to operate the antenna in the region of lowest RCS. This

ow return region is a consequence of delicate cancellations

lue to the physical layout of the aperture. Such cancellations

xe not as complete for highly curved structures as they are

or planar cavities.

Conformal antenna designers often use wraparound an-

ennas to achieve omnidirectional coverage. Two different

•onfigurations are typically used: a continuous cavity where

he cavity is filled with a single continuous collar of dielectric,

md discrete cavities symmetrically placed around the circum-

erence of the cylinder. These two configurations arc shown

n Fig. 9.

Since near resonance the radiation properties of these two

ypes of antennas are similar, any RCS advantage one might

)ossess could govern the appropriate choice of arrays. Fig. 10

•ompares the E-polarized monostatic scattering at 3 GHz in

he 0 = 90 ° plane for a wraparound cavity and four discrete

:avities, where the patches and cavities are identical to those

lsed in the previous example. The radius of the cylinder

s 15.28 cm, and the four patches are centered at 0 °, 90 °,

[80 °, and 270 °. Not surprisingly, the wraparound structure

1as a higher return due to coupling within the substrate.
-Iowever, since in this case the scattered field is due to

.he z component of the surface field (0-directed magnetic

:urrents), both cavities yield large scattered fields in the four

"lirectional lobes. Fig. 11 is the corresponding comparison for

q-polarization.
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cmx 6 crn x 0.07874 cm cavlp., with ¢_ = 2 17 as a tunctton of cur',ature

for H-polanzauon _o = 90°}.

In this case. the scattered field is attributed to the o

component of rile surface fieMs (,--directed magnetic currents _.
Therefore. substrate modes diffract near the patch, resulting

in discrete lobes for the discrete array while creeping waves

shed isotropically for the continuous wraparound cavitx. Lov,'

observable designs will favor discrete cavity arrays over
continuous cavities since the scattering may be channeled

in preferred directions and the overall scattering level is

consistently lower. A final example is shown in Fig. 12. where

we observe that other than the expected higher scattering from

the wraparound cavity, the scattering behavior of the two

arrays is very similar.

VI. CONCLUSIONS

In this paper, we have presented a finite element-boundary

(FE-BI) integral technique suitable for electromagnetic scatter-

ing calculations involving cavities embedded within a circular.

metallic cylinder. This formulation is analogous to the FE-

BI approach used by Jin and Volakis [1], [5], [6] and may

accordingly be used for the analysis of scattering by a large

array of cavity-backed patch antennas. These cavities need not

be identical, periodically spaced, or homogeneously filled and

may in fact may possess lumped impedance loads or surface

metallization layers. The FE approach employs vector fimte

elements that properly represent the electromagnetic fields and

possess high geometrical fidelity for cylindrical-rectangular

cavities. Such elements were presented and are analogous to

the bricks used for modeling rectangular cavities. In addition.

we presented an efficient method for evaluating the on-surlace

and far-zone dyadic Green's functions. The presented formu-

lation is amenable to solution using the BiCG-FFT metht_d

provided uniform zoning is used across the aperture, and a,

a consequence this implementation has Iov,' computational

and memory demand. We have presented some vahdau,_n

of this work with appropriate limiting cases that provide,
further archival reference data. In addition, we shov, cd h,,v,

this formulation may be used to influence conformal antcm'._
designs.
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one used in Fig. 7. The observauon plane is# = 90 °.
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Fig. 1I. Comparison of H-polarized monostanc RCS at 3 GHz for a four

patch array placed on a wraparound collar or in four discrete cavmes. The

ey|mder radius is 15.28 cm. The patches and cavities are identtcaJ to the one

used in Fi 8. 8. The observatJon pl.an¢ is # --" 90 °.

APPENDIX:

FOCK FUNCTIONS

The asymptotic form of the dyadic Green's function with
observation both on the surface of the cylinder and in the

far field involves Fock functions. These have been extensively

studied and tabulated by Logan [13]. The numerical evaluation

of these functions is performed for either small arguments or

large arguments.

The on-surface Fock functions used in this paper are

1 _,,/4 /_-:_ w2(r) _j_rd r=

u(_) = e_a'_/_ f_ f: w'_(T)e-_'a_-

where u,_(r) and its derivative w'_(7-) denote Airy. functions

of the Second Kind. For small arguments (_ < 0.6). the

asymptotic expansion of (A-I) is given by

while a rapidly converging residue series is used for _ > 0.6:

10 -1

n=i
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cylinder radius is 15.28 cm. The patches and cavities are identical to the

used in Fig. 8 The observatlon plane is o = 0 ° .

TABLE I

Table B- 1

Zeros of the w2(r) and w'2(r )

r. = ir.le-'_ and r,: = I_'_le-:_

n

I

2

3

4

5

6

7

8

9

i0

2.33811 1.011879
4.08795 3.24819

5.52056 4.82010

6.78661 6.16331
7.94413 7.37218

9.02265 8.48849
10.0402 9.53545

11.0085 10.5277

11.9300 11.4751
12.8288 12.3848

i

l0

n=.]

TABLE L1

Table B-2

Const_mts for (A-5) and (A-6)

m

I
2

3

4

5

6

7

8

9

i0

c(m) o'(rnl ! .4,(m}
I

0.7473831

-0.6862081

.2.9495325

-3.4827075

8.9378967

56.1946214

1.01879297

3.2481975

4.82009921

6.16330736

7.37217726

8.48848673

9.53544905

10.52766040

11.47505663

12.38478837
J

0.5356566
-0.41901548

0.38040647
-0.35790794

0.34230124
-0.33047623

0.32102229

-0.31318539
0.30651729

-0.30073083

calculated using

g(0)(_) = 2.0e-J_ _ <-1.3
6

1.39937 + Z __)_(_),n. _ 1.3 < _ < 0.5
m=l

= E ow(_)0.5<__<4.0
rn_l

-(0.g823-j0.5094)(-:
= 1.8325e k ( > 4.0 (A-5)

0.25 ,' < -2.8g(1)(%¢) = --j2.0 ¢2 + j _ _4 /

=_ m! (_)m-_ -2.8<_<o.5
m=l

zo e[_(,.,.,)_]

= _ E Ai(m) 0.5 < _ < 4.0
m=l

= -1.8325(0.8823 - j0.5094 + j_2)

(A-3) [- (o.8s23-.i0.so94),-3 _ ]
• e . _ > 4.0 (A-6)

._re r_ and % are zeros of w2(r) and u/2(r), respectively.

_se zeros are given in Table I.
"he far-zone Fock functions are given by

jl fF eJ_"
glt)(c) = _ --dr

v'_r u'_(r)

J_ fr e_"
--dT-

G("(, c) = g"!((le:g

(A-4)

.'re u'_(r) and its derivative u"_(r) denote Airy functions of

First Kind and the integration contour is given by Logan
! These functions..q(O_((), gl_)(_), and f(o)(c), may be

0.25 0.5) e--'y°_(_/= ./2_ 1- _ + --_ < -1.1

6
c(m)

= 0.77582+ e -i_13 Z m"_. (n_)'_ - 1.1 < _ < 0.5
rn=l

I0 ei_o(mK]

= e-)_r/3 Z Ai'(m) 0.5 < ( < 4.0
rn=l

= 0.0 ( > 4.0 (A-7)

with constant n = e-_S"/6 and the coefficients for (A-5) and

(A-6) given in Table II.

The corresponding constants for (A-7) are given as shown
in Table III.
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L

m_
,

i
2
3
4

5

6_
7

8

9

I0
i

TABLE m

Table B-3

Constants for (h-7)

c(m)
I, 146730417

0.86284558

-2.0192636

-9.977776

-14.59904

49.0751

a(m)
2.33810"/'41

4.08794944

5.52055983
6.78670809

7.94413359

9.02265085

10.04017434

11.008524__30

11.93601556

12.82877675

A,*(m)
0.70121082

.0.8031I137

0.86520403

-0.91085074

0.94733571

-0.97792281

1.00437012

-I.02773869

i .0487206,5

-I.06779386

g'- = ,V_ ("_-"_)"5'';'-_''_o-'_

i . _ 3 L =""_'_P, Pr(P_--P;)j x (O-O,'!O-OrUtO

IB-]

Each of the above unevaluated integrals is of the form

t 1 -2

_([-3_L j) i i,t_L4-

IB-2

FE MATRIX ENTRmS

The matrix entries for the FE portion of the system (5)

are given in this appendix assun_ng that the cylindrical shell

elements (4) are used in (6). These integrals are given by

{

= _ 2pbln +Pt l-

f/'• (z - ":,)(z - _t)d:

b

r(1) __ gsstPb L °"

./i'(= - 4)(: - _,)dz]

_) _ ,s,_ L _'_ ,2 (p - _)_)(p- h,)dp

,, ,.,,,,[: -(to} = o (p__p2)_t(_,+,bt)+,b,,&,ln p_

, ,L °" ]
[

, (oh) _- In (o - g,)(o - St)dO
I

• (z - 5_)(z - 5t)dz
b

- _ (4 - p_)+ 5(_, + _,l(p_- p_)

+ -_,,h,(_ - p_) × (=- i,)(_- Z,)d:
b

The integrals [(_ _.(2)-,t are used in the assembb of the FE portion

([A}I of the system.
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A Hybrid FiniteElement-Boundary Integral

Method for the Analysis of Cavity-Backed

Antennas of Arbitrary Shape
Jian Gone..gude,Tt .tlcmh_'r EEL John L.. Volakis. Semor Member. IEEE. A. C. %oo. and H. T G _'ang

Abstract--An edge-based hybrid finite element-boundao inte-

gral t FE-BI_ formulation using tetrahedral elements is described
for scattering and radiation analysis of arbitrarily shaped cavity-
backed patch antennas. B._ virtue of the finite element method

IFEMI. the cavil3 irregularities, the dielectric super/substrate
inhomogeneities, and the diverse excitation schemes inside the
cavit_ ma_ be readily modeled when tetrahedral elements are
used to discretize the cavit). On the aperture, the volume mesh

reduces to a triangular grid allowing the modeling of non-
rectangular patches. _A'ithout special handling of the boundao
integral system, this formulation is typically applicable to cavity-

backed antenna systems with moderate aperture size. To retain
an (_ \ r memor.v requirement, storage of the full matrix due
to the boundary integral equation is avoided b_ resorting to a
structured triangular aperture grid and taking advantage of the
integral's convolutional property. If necessao, this is achieved
by overlaying a structured triangular grid on the unstructured
triangular grid and relating the edge field coefficients between the
two grids via two narrow banded transformation matrices. The
combined linear system of equations is solved via the biconjugate
gradient IBiC(;J method, and the FFT algorithm is incorporated
to compute the matrix-_ector product efficiently, with minimal
storage requirements.

I. INTRODUCTION

ICROSTRIP antennas have been extensively investi-
gated experimentally, analyticall,,, and numerically for

decades. Bx and lar F. numerical methods have been serving

the engineers and researchers in the analysis and design of

these conformal antennas for man)' years. Among them the

moment method in conjunction with various integral equation

IIE_ formulations pla_ed a major role [I]-[3]. However. IE

methods are associated with field representations in which the

appropriate Green'_ function for the specific geometry must

be emplo._cd, and this limits their versatility. Moreover. IE

technique, are usuall_ formulated on the assumption of an

infinite subqrate, a model that obviousl_ deviates from the

practical configuration, leading to inaccuracies for larger band-

,xidth antennas. Furthermore. in the context of IE methods.

antenna e,,cttation, are represented using simplified models

that differ more or les_ from the actual configurations. Also.
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due to the singularity of the current distribution near the patch-

probe junctionlsl, special measures must be taken [4}. not to

mention addttional IE complexities due to possible substrate

anisotropies er inhomogeneities in the antenna substructure. In

contrast, the hybrid finite element-boundan' integral IFE-BI)

technique alleviates these difficulties, and this was demon-

strated recently when the method was applied to rectangular

patch antennas [5].

In this paper, we present an edge-based hybrid FE-BI

formulation using tetrahedral elements for a charactenzation

of arbitrarily shaped cavity-backed antennas. An example of

such a configuration is shown in Fig. 1. where a cavit,, is

recessed in a metallic ground plane enclosing the FEM volume

and the antenna elements on the aperture may be excited b,,

different schemes, such as a simple probe, a magnetic frill

generator, a practical coaxial cable, microstrip lines, slots, or

a CPW line. In the context of the FEM. the cavity is fin

discretized into a number of tetrahedral elements that natural i_

reduce to triangles on the cavity's aperture. For nonrectangular

patches this mangular gridding is. in general, nonunttor_n.

and the exact boundar3, integral formulation based upon tht.,

mesh applies to an3 patch shape. As a result, the hxhnd

FE-BI technique is capable of modeling arbitraril\ ,hapcd

cavity-backed antenna configurations, different substratc _n

homogeneities, anisotropies, and vanous practical exc_tat_,,n

schemes.

As is well known, the boundan integral Bll cquat_,,i

subsystem leads to a full\ populated matrix _hose ,_/c ,,

determined by the number of aperture mesh edges. F,,r lar,_'c

apertures, this analysis becomes impractical in term,, _! ,h,ra,_'c

and computation time requirements, and to o',er_,,mc :r:,.

inefficiency a uniform zoning of the aperture _s rcq_,rc.:

(g_lg-gZOX/9450'_u' _ '994 IEEE



B,, resorting to the structured mesh. the boundary' integral
matrix can be cast into a discrete convotutional form. thus

permittang the computation of the mamx-vector products via

the discrete Fourier transform (DFT). avoiding a need to

store the full BI mamx This memory-saving scheme has

already been applied to IE soluuons involving rectangular

[6]. [13] and mangular ['7] surface grids, and in this paper

we descnbe hov, the BiCG-FFT solver is implemented for

tnangular meshes. The differences between the rectangular and

mangular meshes are also described, and results are presented

that demonstrate the method's versatility in computing the

scanenng and input impedance of various non_rectangular

pnnted antennas

II. FORMULATION

In this section, we present the edge-based hybrid FE-BI

formulation using variational principles, where the matrix

algebra notation is employed so that one can readily extend

the formulae to the general anisotropic case. As derived in

[5], the complete functional pertinent to the scattering and

radiation by a cavity-backed configuration (shown in Fig. I)

may be written as

F(E) == fV × E)- _(V × E) - k02,,f. dv
• /A.r

+ -'..
{IL<..,>.(,+

(I)

where J, and M, represent interior electric and magnetic

current sources within the cavity V; B' is the incident field,

if an)', from the exterior region; the surface S emcompases

the cavity aperture excluding the portion occupied by the

antenna elements; ¢, and _t, denote, respectively, the relative

permitiivity and permeability; k0 is the free space wave

number, ] the unit dyad. and G0(r.r') the free space Green's

function with r and r' denoting the observation and integration

points

A. Cavity Volume Modeling

In proceeding with the discretization of (1), it is convenient

to reexpress it as

F = Fv + Fs (2)

where Fx- denotes the volume integral contributions and,

similarly. Fs accounts for the surface integral contributions.

The cavity volume is subdivided into N tetrahedral elements

_,) (e = 1.2.,.. N), and within each tetrahedron the field is

expanded using edge-based elements as

E = [I'15(E}_ (3)

with

{v;, = {{v:ltv_l{v.-/;,

{l_,i

ti_.} = t _)"

\E6 ,

II _ d', V. 2
,A,

in which l_, is the u ( u = z. y or : ) component of the xolumc

vector basis functions along the zth edge. The unknov, n _ector

{E}, has six enmes, one for each tetrahedron edge (In th),

paper, we use square brackets for mamces and curb bracket,

for vectors.) Inserting (3) into (2). and taking the first _ariatlon

of F_. with respect to {E},, yields

_V,.= _ ([.<,iE}< - {_,I, 1
e

q5)

where

I.l.: iii, {±I-,'l.I,,Is -

{ I"-){K)<= :3}./// .jkoZo 4,
\a,..

+V x _ M,_ dv

"- \M,:

o o _;}_(v.}- b--7,(
0 0 .

[DV]/ = _--7{t7} - _-Tx{l':}

o _o(_;}
_{i;,} 0y

"1

"' 71"ir_ ,l_?'k

(7)

(8)

To carry out the above integrations, it remains to introduce the

volume expansion or shape functions V_. For our implemen-

tation we employed the linear edge-based shape functions for

tetrahedral elements given in [81 and [9].

B. Aperture Modeling

To discretize the surface integrals in (1). the aperture is

subdivided into triangular elements since these correspond to

the faces of the tetrahedrals. Within each triangle, the field is

represented as

E = {<_{E.}, ,9)
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v,here

is], =

[s°,l
{s°i=is : I.

\S,,3 /

IE,}, = IE,2
\E,3 <

u=_.y

in which S_,, is the u(u = z.y) component of the surface

vector basis functions along the zth edge. On substituting (9)

into the surface integrals of (2) and taking the first variation

of Fs with respect to {E,},, we obtain

where

_Fs = Z {[B],{E,}_ + {L}_}
e

• Go(r.r') dSdS' (12)

and

( +I;,) ds{L}¢ = j2koZo [S,] t_H= .

Note that in (121 the elements of the array [S_] are functions

of the observation vector r, whereas the elements of IS,] r are
with respect to the integration point r'. A suitable set of linear
edge-based surface basis functions is

S,(r) = _.x (r- r,)e(r) r E S_ (14)
otherwise.

C. System Assembly

To construct the final system for the solution of the electric

field components we combtne (5) and ( I 1). and after assembl_

we obtmn the system

(I0) {[AI{Ei+{K}i+{[B]{E,},-{L}} =0. (I0,

In this, {K} and {L} are the excitauon vectors due to the

interior current sources and the exterior exc_tauon, respec-

tively. The unknown elecmc field vector {E l consists of all

field expansion coefficients with respect to the element edges

except those coinciding with perfectly elecmcally conducting

(PEC) walls, PEC antenna element(sL or PEC pins ins)de

the cavity. Finally, the vector {E,} represents the unknown

surface fields whose entries are part of those tn {E} w)th

their corresponding edges on the aperture. The explicit ex-
pressions for the matrices and vectors in (16) can be readih

extracted from (6), (7). and (12) (see also [I I]). It is evident(II)
that [A] and [B] are symmetric as a result of the assumed

isotropic mextium and reciprocity. In addition. [A] exhibits

high sparsity due to the FEM formulation, whereas [B] is full,,

populated. Two approaches may be followed in carrying out

the solution of the combined subsystems when an iterative

solver is employed, such as the biconjugate gradient (BiCG)
method [13]. These two approaches differ in the manner used

for the evaluation of matrix-vector products called for in the

iteration steps. One could sum the coefficient matrices [A] and
[B] by adding up the corresponding matrix entries prior to

the execution of the BiCG algorithm, or instead the resulting

vectors may be summed after carrying out the individual

matrix-vector products. We observed that the first approach

is more efficient in terms of computation time after reordering
the combined matrix and storing only the nonzero elements.

(13) This is because, in the context of this scheme, the combination

of the two matrices is performed only once outside the

iteration. However. the second approach is compatible with

the BiCG-FFT scheme, where the FFT algorithm is employed
to exploit the convolutional property of the integral operator,

thus eliminating a need to explicitly store the entire BI matrix.

Below, we discuss the implementation of the matrix-vector

product of the boundary integral system for the BiCG-FTT
solution.

In this expression, l, denotes the length of the ith edge and r,

is the position vector of the vertex opposite to the ith edge.

Since each edge shares two triangles, one is defined as the plus

and the other as the minus triangle. Therefore. e(r) is given by

i_ re S7e(r) = 1 r E S_- (15)

where S, = S$+S;. The constant A, in (14) denotes the area

of the plus or minus triangle depending on whether r E S_"

or r E S.-. We note that S,(r) x _ yields the basis functions
used b_ Rao et al. [10] in their moment method solution of

boundar}, integral equations.

D. Implementation of the Boundam Integral

Matrix Vector Products Using FFT

We refer to Fig. 2. which shows an overlay of a uniform

grid over a nonuniform mesh• The boundary integral equation

is implemented using the structured triangular grid. and the
relation between the unstructured and structured mesh is

described in the next section. We recognize that the tnangular
grid consists of equal right mangles and thus involves three

different classes of edges (classes 1. 2, and 3). These include

the x directed, V directed, and the diagonal edges, all of which

are uniformly spaced. For the FFT implementation, each class

of edges is independently numbered in accordance with their

geometric location. Specifically, the ith class v,ill cart3, the

numbering (m. n) if the edge is the ruth along the m direction
and the nth along the V direction. The indices ( m., ) take the
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Overlay of a sEucturrx:l triangular aperture mesh over an unstructured mesh. shown here to conform to a clrculaJ" paich

values

m = 0.1,2..-.,M'

n = 0.1,2..-.,N'

with i = 1 for the y directed edges, i = 2 for the diagonal

edges, and i = 3 for the .i" directed edges. Consequently, we
find that

M-2 i=1 {N-1 i=1
M' = M- 1 i=2 N' = 1 i=2

M-1 i=3 2 i=3
(17)

where M and N denote the numbers of elements along the x
and y directions, respectively.

To perform the integrations for the evaluation of the bound-

ary integral matrix elements, it is now convenient to rewrite

the basis functions (14)in terms of the new indices (re.n),

We readily find that the edge-based basis functions associated

with each of the aforementioned class of edges can be rewritten

as shown in (18)-420) at the bottom of the page, where the

superscripts refer to the edge class. Each entry of the boundary

matrix-vector product can non be calculated as

{BI subsystem} =[B]t E, }

_ E _-= B_ ....... ,,,.
j=l Lrn'=o n'=u

t21_

in which (m. n) are the geometric location indices for the ith

class observation edges, whereas (m'. ,'1 are the same for the

jth class edges belonging to integration elements Thus, the

specification of the indices _, n_. and n completel._ defines

the entry k, =nM' + M of the column resulting after the

execution of the boundary matrix-vector product. It is readily
found that

STrlfl .trl 'TI ' _

- 2k 2 S,_,, •S.,,.,G,(r.r')(Lrdfld,r d.u

+ (._Xx_.Xy)2 _,(r)_j(ri/,lj

Go( r. r' ) dx d,_ dx' dy' _22 )

1 [(n..%y - y)2 + (x - mAx)f/ (.r..VI E 5,-

(o otherwise.

nAy-.V)x + (.r- (m _- l).Sx)._)
S_,,(x.v)= v/('5"r)2+(AY)2 (.v-(,+I)Z.v)J'+I-,A:'-:,)_

AxAy 0

=

E S,-

ES,-
otherv, ise

((n+2)Ay-y))+(.r-(m+ llA.ri_ (J._l _ $7

(y - hA:q)2 + (mAx - x)._ (.r..Ul E S,-
0 other_ ise.

(18_

(i9)

(2(})

6O
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l,= _(__a-i 2-.- 3Vt2 ,=2
,--3.

(231

More important, it can be shown that the BI subsystem exhibits
U

the convolutional propert) B .... ,,,, = B__,. , .... '1" and
thus we can rewnte (21) as

3

[B]{E,}= B".
3=1

(24)

where the • denotes convolution. It is now seen that the

computation of the boundary matrix-vector product can be

performed by employing the 2-D discrete Fourier transform

(DFT), thus avoiding a need to store the BI matrix other than

'.hose entries that are unique. When the symmetry property of
12

B(m_ m, .... ,) is also invoked, implying

13B<,n_,,,.... ,) = .... .,_.) (25)

t is concluded that the total nonredundant entries in the BI
natrix are

3 3

Np = Z Z N'(M' + M j-l).
I=I 3----i

(26)

I'his should be compared to the (_=l 2M'N') entries whose
\

torage would normally be required if the BI system was not

:ast in convolutional form. We remark that Np is nevertheless
,qual to twice the number of entries required for uniform

ectangular grids [61 for one class of edges. To avoid aliasing,

t is necessary that BI__.,, ,,_,,, ) = B;'(ffl._) be cast in a
:-D array that has the usual periodic form, and zero padding
nay also be required to make use of the standard FFT routines.

;pecifically. the matrix-vector product (21) is executed by
sing the MFTxNFT array (27), shown at the bottom of the

,age, with the corresponding field vector given by

= _'EJ(rTLfi) 0< _< M-', 0<fi <N J
E_(rTL fi) to otherwise.

(28)

nd MFT and NFT must be powers of 2 if a radix 2 FFT
Igonthm is used.

in the BiCG-FFr algonthm the BI _ub_tem _ector l_

computed as

3

{Blsubsystem} = E'S'{DFT-I{DFT{B; :'_ DFTiE;!tt
I=1

_291

The presence of the operator ._ indicates the necessar'_ reorder-

ing of the 2-D array that results after the reverse FF'T operauon

into a single column with the proper indexing for addmon to
the FEM subsystem. It should be remarked that m contrast

to [7] the integrals 1221 are evaluated _'ithout introducing

any approximation. This is necessary to presene the global
combined system symmetr}'.

llI. MESH OVERLAY SCHEME FOR

NONRECTANGULAR PATCHES

As described above, the BiCG-FFT solver requires uniform

aperture gndding so that the BI subsystem can be put in

block circulant form. This can always be achieved during mesh

generation whenever the patches are rectangular in shape or

in case of radiators that are placed at some distance (usually

small) below the aperture. However. for circular, triangular.

or other nonrectangular patches on the aperture, it is not

possible to construct a uniform mesh using the mesh generator.

Typically. the aperture mesh is necessary to conform to the

patch shape, leading to an unstructured free surface grid. In
this case. to make use of the efficient, low-memory BiCG-

FFT algorithm, an approach is proposed to overlay on the

unstructured aperture grid another coincident structured grid.

as shown in Fig. 2. The boundary integral subsystem is then

constructed using the overlaid uniform grid, whose edge fields

can be related to those on the unstructured grid via two sparse

transformation matrices. That is, it is necessary, to append to
the system (16) the relations

{E,}u = [TFI{E.}.,,
{E.}.. = _30)

where the subscripts u and nu refer to the field coefficients

of the uniform and nonuniformaperture grids, respectively.

Also, [TF] and [TB] refer to the forward and backward trans-

formation matrices, respectively, with N,, and N,_ denoting

the numbers of the uniform and nonuniform mesh edges on
the cavity aperture.

0<fft<M'
B's(-N'-B)" 0<fi<NJ

MPT-M'+I < r?t<MFT
B'"(-_'-_)" 0<fi<NJ

BU(_n, fi- 1-NFf'), 0<_< hi'
NFT-N J+ 1 < fi < NFT

BU(_ - 1 - MFT. fi - 1 - NFI').

0 otherwise.
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MFT-M'+I < r'h <MFT

NFT-NJ+ 1 < fi < NFT
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Fig 3 Illustration of the parametersandgeometryused,n construcung
transfon'natmnmamxelementsbetweenthestructuredandunstructuredmesh.

To derive the elements of [TF], we begin with the expansion

(9) and enforce it at three points on each edge belonging to

the uniform grid. We conveniently place these three points at

the center and ends of the edge (see Fig. 3). Given the fields

at these points, we can interpolate the field along the (m. n)

edge of the uniform grid using the weighted average

,_'end I

}. 1
= - Enu (rend,)

(Eu)(m.n) 2 eu" 2Nendt Z k
k=l

-¢-_Z1 -_',.,d Enu(rmid)k
k=l

2_end21,%',-d2__ 1
+ _ Z Enu(renda)k (31)

k----1

in which _, denotes the unit vector along x, y or the diagonal,

depending on the class of edge being considered. The quanti-

ties E_u represent the fields in the nonuniform grid mangles

with the superscript k being a sum variable in case r_,_,_,,

rend:, or rmi d SpeCify a point shared by more than one triangle.

Obviously, 3,_,d_. Nmid. and Nend_ denote the number of

nonuniform grid triangles sharing the node at rend,, lrmid, and

rends, respectively, and will typically be equal to unity.

After assembling {$1) into (SOL we find that the elements

of the forward transformation matrix are given by

"_'end ,, 3

1d . 1 k= ,;.o 2Xood,E Z'"'S'('e°d'>
k=l £=1

I .v=,d 3

k=l i=l

"X'end j 3 1

l k
+ 2Xood----SS.

k=l _=1

in which

e,j = {10 J=Jeotherwise
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and the global indices , and j correspond to the ;th un:;

grid edge and the jth nonuniform grid edge The _ub,cnp_

is the global index used m numbenng the nonun)torm g_

edges, whereas the subscript _ _= 1. 2. or :_ t_. the hx:al ed_c
index used in the definition of the bast_ functmn, S. ,.,c:'

(14)). We remark that the exphc_t computation and ,.tora_c
of the transformation mamx elements results m a ,,ub,,tanh.t:

increase in efficiency because it a,.otds the usual a_,scmN,.

process during each lnterat)on step and that the propo,cd

overlay scheme allows the analysts ot large nonrectancular

patch arrays because storage of a full,, l_pulated BI ,_,tem

matrix is avoided. The user needs onl,. to pro,,ide an additional

data file that flags the uniform grid edges }.,,ing on a PEC

element, and this is an important user-oriented feature ot the

formulation. Following the same procedure, v,e can obtain

the expression for the enmes of the back_,ard tran_tormauon

matrix. It should be noted that assuming each uniform grid

edge traverses three or less nonuniform grid mangle.,,, the

nonzero enmes in each rog of [TFI ,,,,'ill be 9 or less. Hov, e_er.

they can reach a maximum of 18 if the midpoint and endpomt_,

reside on an edge of the nonuniform grid. The maximum

nonzero entries in each row of [TB! will be 15. but the typical
number will be much less.

IV. NUMERICAL CONSIDEtL_,TIONS

Based on the presented FE-BI formulation, a computer

program was written for the analysis of the radiation and

scattering by cavity-backed patch antennas of arbttrar 3 shape.

The antenna geometry is supplied to this program in an

input file that, as a minimum, must contain lists of I) the

nodes and their (x.y.z) coordinates. 2) the nodes forming

each tetrahedron, 3) the nodes on the cavity aperture, and
4) the nodes on metallic boundaries. For arbitrar,, antenna

geometries, it is necessary to employ a sophisticated volume

mesh generation package, and a number of these are available

commercially. Typically. each of these packages generates a

"universal file" that can be readily preprocessed to extract

the aforementioned input lists.

A major effort was devoted to writing the program in a

manner that minimizes the storage and computational require-

ments. Specifically, the boundary, conditions on the metallic

surfaces are enforced a priori to obtain a system that m,,olves

only nonzero field components. The sparse finite element

matrix was stored as a single array of length .\ .\_,. _here
N_, is the total number of unknowns within the ca_ )Ix _olume

and Nnzdenotes the maximum number of nonzero r_)_ entries.

The BI matrix was stored in different v,a_s, depending on

whether the FFT was to be employed for the cxaluJt_on of

the matrix-vector products. If the BiCG solution _._,. to be

carried out without the FF'Y. then the .\. , .\. BI integral

matrix was added to the FE array, resulting m , I-D arra.',

about ,_",.Nnz + ._,:_ long. For slot antennas, mcludm,_' ca_it',-

backed spirals, and moderately sized system,. _t _a, round

preferable not to use the FFT. thus avoiding an_ ,_w._, ,dation

errors. In that case the generation of a single _,,r_:_':Hcd FE-

BI matrix before execution of the BiCG ale,,: ...... r..duce_

the computational requirements. This is bc..,.._ ':umber
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of operations associated with the repeated combinations of
the FE and BI subsystems within the BiCG iteration is
avoided

When the FFT is to be used as pan of the BiCG solver.

the FE and BI mamces must be kept in separate arrays

throughout the execution process. In this case. the FE matrix is

again stored as a single array, and similarly the nonredundant

elements of the BI mamx are stored in another single array

of length 9.V(2M - I). The factor of nine is due to the

three classes of edges, and as usual ,'vI and N denote the

number of elements along the :r and y directions, respectively.

Because of the storage and computational efficiency of the
BiCG-FFT algorithm, it is necessary to resort to uniform

aperture grids for conformal antennas involving a substantial

number of aperture edges. Of course, one should always use

uniform mangular grids when the patches on the aperture are

rectangular or if the array supports a superstrate. In the case

of nonrectangular patches it will be necessary to overlay a

structured triangular grid over the unstructured grid generated

t_y the mesh generator. This must be done in the preprocessing

_tage, and should be taken into account when constructing
_he FE matrix. For scattering computations, the overlay of

he structured grid is almost always the preferred approach

>ecause it does not, generally, compromise the accuracy of
he computed scattering cross section. However, for antenna

)arameter computations, the interpolation scheme between the

tructured and unstructured grid edges may be of concern,
lepending on the specific antenna geometry. Generally, thin

nnular slots and plannar spirals should be treated without

esorting to structured grids, and to our experience this does

ot cause a large computational burden because these antennas

re associated with small apertures. In the case of circular,

-iangular, or other nonrectangular patches, the structured grid

/as not seen to compromise the computational accuracy. Of
ourse, conclusions based on one type of antenna do not

ecessarily apply to others, and thus the suggested alternatives

rest be examined separately for each antenna before choosing
ne approach over the other. Of importance here is that the

)rmulation is suitable for modeling any antenna shape and
;ed structure.

V. RESULTS

We present below some representative numerical results for

.e purpose of validating and demonstrating the robustness

the tetrahedral formulation for scattering and radiation by

fferent configurations of cavity-backed antennas. In each

.se the computed results via the FE-BI method are compared
ith reference measured or calculated data.

Scattering and radiation bv a circular patch: Fig. 4 illus-

ltes a circular patch residing on the surface of a 0.406 cm

ick substrate having a relative dielectric constant of _ = 2.9.

_e patch's diameter is 2.6 cm, and the substrate is enclosed

a circular cavity 6.292 cm wide. This cavity and the patch

;re recessed in a low cross section body for measuring its
,'S. A comparison of the measured and calculated backscatter

RCS as a function of frequency is also shown in Fig. 4.

r this computation, the direction of the incident plane wave

E

v

o'J
L_
e¢

=**

e,e

0¸9130
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Fig. 4. Compsmson of the computed and measured cr.. back scatter Rf.'S

as a funcuon of frequency for the shown cttrular patch, The incidence an,.:le
was 30 _ off the ground plane

1.0

O.S_2.0

1 measured

X calcuiateO

1.0

Fig. 5. Comparison of the computed and measured input impedance for the

ctrcular path shown in Fig. 4. The feed was placed 0.8 cm from the center of

the patch, and the frequenc_ was swept from 3 GHz to 3.8 GHz

was 60 ° from normal, and as seen the agreement betv_een

measurements and calculations is very, good throughout

the 4-9 GHz band. Input impedance measurements and

calculations for the samd patch are displayed tn Fig. 5

;The probe feed in this case was placed t)._ cm from the

patch's center, and it is again seen that the measurements and

calculations are in good agreement.

Radiation by d one-arm conical spiral: We considered the

modeling of this radiator to demonstrate the geometrical

versatility of the FE-BI method. Two pro)ections of the spiral

radiator and surface mesh are illustrated in Fig. 6. The top

and bottom edges of the strap forming the spiral follow the

lins,_ p = 0,0503Aexp[0.221(¢+ 2.6611. : = _: exp(0.221o.
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Fig 6 Illustration of the configuration and mesh of the one-arm conical spiral used for the computation of Fig. '7.

where (p.o. z) denote the standard cylindrical coordinates.

a= are equal to 0.0832A and 0.0257A. respectively, and

0 < ¢, < 27r. This spiral arm resides on an inverted cone (9.24
cm tall) whose bottom cross section has a diameter of 1.68

cm and the top cross section has a diameter of 21.78 cm. For

our calculations A = 30 cm (f = 1 GHz) and the spiral was

situated in a circular cavity 10.01 cm deep. The computed Eo

principal plane radiation pattern taken in the O = 90 ° plane,

using a probe feed at the cavity base, is given in Fig. 7. It

is seen that this pattern is in good agreement with the data

given in [12]. As can be expected, the E_ pattern (not shown)
differed from the measured data near the horizon because of

interference from the finite circular cavity housing the spiral

that v,'as included in the analytical model. The latter was not

part of the measurement configuration, which consisted of the

spiral antenna on a large circular plate.

Anm,tar slot impedance." Fig. 8 shows a narrow' circular

/(I.75 cm w'idel annular slot situated in a circular cavity 24.7

cm wide and 3 cm deep. Because the annular slot is narrow.

the implementation of the BI subsystem is very small for

this application, and as a result there is no need to invoke

the FF-q" in the BiCG algorithm. The FE-BI method is basi-

cally quite effective in modeling small aperture configurations

v_ithout a need for special computational considerations. Input

impedance calculations as a function of frequency for this

radiator, excited by a probe placed across the slot. are shown

in Fig. 8. and agree well v,ith the values calculated via a

modal-boundary integral method [14]. For these calculations.

the frequenc', v,as sv,'ept from 700-1000 MHz. The dielectric

t_
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Fig. 7. Comparison of the calculated radmtion pattern IF- _. taken m the

o = 90": plane, with data in reference [12] for the one-arm comcal spiral

shov_'n in Fig 6.

constant of the material filling the cavit._ ma_ set to ,, = 1.:+5
as in [14]. and this is an effective _alue to account for

the presence of a dielectric slot cover used as part of the

measurement model for holding the plate.

VI. CONCLUSION

We presented a hybrid finite element-boundar3 integral

(FE-BI_ formulation that incorporates linear tetrahedrals. The

64



CK)%G e' ._: A,N-M_'TSIS OF CAk,'I-I_-BACKED ANTF_NNAS OF M_BITRJkR'r SHAPE ,'.;

°° ..... °..°

b _.':

-° .... .°°

|. 1235 cm

b-O75cm

po=7 7c_q

07 <f< 1 Gila

_ _ __ |t41xx_

• _.nt_ fkd$

It 03 _----t.o--._o--, t "

0.3

t.O

Fig. 8. Comparison of input impedance calculations for the illustrated cav-
ity-backed slot.

method was specifically developed for the radiation and scat-

tering analysis of cavity-backed printed antennas, where the

FEM is used for modeling the cavity region and the BI

equation acts as a global boundary condition for terminating

the mesh on the cavity aperture. The FE-BI formulation is

particularly suited for the analysis of complex configurations.

and much emphasis was given here in developing a solution

technique requiring O(N) storage in spite of the resulting

fully populated BI subsystem. The latter was achieved by

making use of the convolutional property resulting from the

structured mesh, thus permitting use of the FFT in the BiCG

iterative solver for computing the matrix-vector products. For

nonrectangular patch geometry, a novel numerical scheme is

proposed to overlay on the unstructured free mesh a uniform

triangular grid, avoiding the storage of the large BI subsys-

tem. For scattenng calculations associated with large aperture

structures, use of the FFT proved essential in minimizing the
computational requirements.

A number of patches, slots, and planar and nonplanar spiral

antennas were analyzed for the purpose of demonstrating the

versatility and accuracy of the FE-BI technique. Certainly,

the need to use a sophisticated mesh generation package is

deterrent to the application of the technique for the analysis

of simple antenna configurations. However, this is unavoid-

able when dealing with complex geometries and. moreover.

the pe_,asive use of such commercial package> on de_ktop
computers makes the technique quite attractive
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